1-20-2023

How to Complement Biomarker Testing with Diagnostic Imaging

Catherine R. Sears, M.D., ATSF

Assistant Professor, Indiana University School of Medicine Director Pulmonary Oncology and Lung Cancer Screening- Richard L. Roudebush VA Medical Center Indianapolis, Indiana

Ψ

Disclosures

1. Research Funding/Grants to the Institution:

Department of Veterans Affairs (CSP, Cancer Moonshot, ORH, BLR&D), NIH, Biodesix, Inc.

2. Consulting/Honoraria:

Bristol-Myers Squibb, Go2Foundation, Massachusetts Medical Society (NEJM), American Cancer Society

3. Some trade names are used in this talk

The contents of this presentation do not represent the views of the U.S. Department of Veterans Affairs of the United States Government.

Biomarkers in lung cancer continuum

Ū

Ideal Biomarker for Early Lung Cancer Detection/ Diagnosis

זה

(Sens, Spec, PPV, 1. **Favorable Performance Metrics** NPV, ROC) Review Guidelines ost-Effectivene 2. Easily Accessible Material Clinical Utility Clinical 3. Small amount needed Outcomes population Research **Clinical Validation** Little/simple sample preparation 4. Locked down Preclinical Blinded accuracy for Cohort intended use Inexpensive/Cost Effective 5. Analytical Validation Applicable to Large Target Population Performance Validation 6. Accuracy/Precision Characteristics Cohort 7. Clinically Useful Discovery Advantage over/with standard of care Easy to interpret / act on results

Sears and Mazzone. Clin Chest Med. 2020;41(1):115-127

Complementing Biomarker Testing with Diagnostic Imaging

Biomarkers to Select for Lung Cancer Screening

Current lung screening guidelines (2022-)

	USPSTF U.S. Preventive Services		NCCN NCCN NCCN National Comprehensive Cancer
Age	50-80 уо	50-77уо	<u>></u> 50*
Smoking history	<u>≥</u> 20 PY	<u>≥</u> 20 PY	<u>></u> 20 PY
Smoking Status	Current or quit <u><</u> 15yrs	Current or quit <u><</u> 15yrs	Current or quit <u><</u> 15yrs
Secondary criteria	None	None	Additional risk factor(s) (race, exposure to radon, risk calculator, etc)

*-77 yo or older if healthy and likely to benefit

Biomarkers for LCS: Optimize Benefit to Risk Ratio

RISKS:

Clinically Useful Biomarker for Lung Cancer Screening **Radon Exposure**

Currently Screen Ineligible

Define High Risk Cohort who will Benefit from LCS

Refine/Combine with Clinical Risk Factors

- Occupational Exposures (asbestos, chromium, coal smoke, diesel fumes, uranium, radiation, silica, soot)
- HIV+ on ART
- Lung diseases (COPD, pulmonary fibrosis)
- Family history of lung cancer (early, never-smokers)
- Prior cancer history (lymphoma, H&N cancer, smoking-related cancers)
- Heavy 2nd-hand smoke, biofuel, open stove exposure
- Populations at high risk for EGFR mutant lung cancer

Clinically Useful Biomarker for Lung Cancer Screening

Currently Screen Eligible

Increase cost-effectiveness of LCS

Patients with comorbidities: highest benefit

Appropriate duration to follow-up LDCT (negative)

Duration to LDCT f/u (positive LDCT)

Increase LDCT uptake in those not getting screened (Low Resource or Disadvantaged Groups)

• Rural/Geographic, Socioeconomically disadvantaged, non-compliant

Lung Cancer Biomarkers - Screening

Ш

	Measurement	Validation Cohort	Sensitivity Specificity*	Proposed Use	Availability/ Clinical Utility
Nodify CDT (Biodesix)	Blood auto-antibody panel (7): ELISA	Patients: 1613 Cancers: 61	Sens: 37% Spec: 91%	Screening risk assessment (outside LCS criteria, more frequent LDCT)	CLIA/ US (NCT01700257 - completed 2020)/ UK (ECLS) – Stage Shift with more frequent corcorning
miR-Test	Blood: miRNA	COSMOS Patients: 1115 Cancers:48	Sens: 78% Spec: 75%	Enrichment of high-risk screening cohort	No/Clinical utility trials ongoing (COSMOS II)
MSC signature (miRNA)	Blood: miRNA	MILD pts: 1085/939 Cancers: 85	*Sens: 95% *Spec: 78%	Enrichment of high-risk screening cohort	No/ Clinical utility trial completed 3/2022 (BIOMILD) – More lung cancers diagnosed, supported longer duration btwn scans if negative
PAULA's (Protein Assay Using Lung Cancer Analytes) (Genesys)	Blood antigen / protein panel: ELISA	Patients: 150 Cancers: 75	Sens: 71% Spec: 88%	Enrichment of high-risk screening cohort	CLIA / Recent new Clinical validation trial using 5 th biomarker
4-MP	Blood auto-antibody panel (4): immunofluorescence bead/flow cytometry + PLCO2012	PLCO pts: Patients: 2,745 Cancers: 552	Sens: 83.5%*/88.4% Spec: 71.6%*/56.2% (*PLCO2012 <u>></u> 1.7%PL CO2012 <u>></u> 1%)	Enrichment of high-risk screening cohort/ Early nodule diagnosis	No
Lung EpiCheck (Nucleix)	DNA methylation	European/Chinese Patients: 361 Cancers:209	Sens 78%-90% (Stage I-IV). Spec: matched control 64%, unmatched controls: 93%	Screening / Early diagnosis	No
DELFI-LUNG (Delfi Diagnostics, Inc)	Blood: cfDNA fragmentation pattern	Enrolling prospective study- 15,000 LCS pt	Varies based on multiple analytic cohorts	Enrichment of high-risk screening cohort / symptomatic lung cancer / Rule-in nodule biomarker	No / NCT05306288 (CASCADE-LUNG for LCS) / NCT04825834 (DELFI-L101 for Nodule Clin validation)
RespiraGene (Synergenz)	Oral swab: 20 SNPs + clinical			Enrichment of high risk screening cohort Smoking cessation for high risk (GeTSS)	No

Biomarker-Driven Lung Cancer Screening Algorithm

Combining Biomarkers with LCS Estimates and Risk Stratification Models

ψ

Lung Cancer Risk Assessment Models (Gold Standard?)

	PLCOm 2012*	Bach Model	LLP*	LCDRAT	Kovalchik Model	TSCE Models	Knote Model	Hunt Model
Source	PLCO	CARET	LLP	PLCO	PLCO	NHS, HPFS	CPS-I/II (ACS) +/- NHS	HUNT2
Factors	Age* Race/ethn icity BMI Education Prior CA Smoking* Family History COPD	Age Sex Smoking	Age* Sex* Prior CA Smoking*	Age Sex Race/ ethnicity BMI Education Smoking FH Emphysema	Age BMI Smoking FH Emphysema	Age Sex Smoking	Age Race/ ethnicity Smoking	Age BMI Smoking Daily cough

*Included in Simplified models

Modeling- Risk Based Screening

Ш

Ten Haaf et al. JNCI. 2020

Combining Biomarkers with LCS Estimates and Risk Stratification Models

4MP + PLCO2012

TABLE 2. Accuracy Performances in the Validation Set for the 4MP, PLCO_{*m2012*}, and the Combined Model of 4MP Plus PLCO_{*m2012*} at Fixed Thresholds of \geq 1.7% and \geq 1% 6-Year Risk, to be Comparable With USPSTF2013 and USPSTF2021 Criteria in ESIA10+

Criteria	N1*	NO	1-Year Sensitivity ^b	Specificity	1-Year TP ^c	FP
≥ 1.7% risk threshold						
USPSTF2013 ^d	119	32,243	0.716	0.564	85	14,061
4MP*	119	32,243	0.824	0.632	98	11,866
PLCOm2012	119	32,243	0.776	0.654	93	11,145
Combined 4MP + PLCO _{m2012} model#	119	32,243	0.835	0.693	100	9,905
≈ 1.0% risk threshold						
USPSTF2021d	119	32,243	0.785	0.493	94	16,356
4MP*	119	32,243	0.915	0.454	109	17,591
PLCOm2012	119	32,243	0.920	0.466	110	17,224
Combined 4MP + PLCO _{m2012} mode ^{pt}	119	32,243	0.884	0.562	105	14,122

Fahrmann et al. J Clin Oncol. 2022

Complementing Diagnostic Imaging with Biomarker Testing

Biomarkers for Nodule Risk Assessment

IJ

Problem... Pulmnary Nodules are Common

>1,600,000 incidental lung nodules/year.... And growing!

Most (Early) Lung Cancers are Detected Incidentally!

Gould et al. Am J Resp Crit Care Med, 2015;192(10) Smith-Bindman et al. JAMA 2019;322(9):843-859

Ъ

Osarogiagbon et al. J Clin Oncol 2022;40:2094-2105.

Pulmonary Nodule Diagnostic Biomarkers

62-Year-Old Male Smoker

54-Year-Old Male Smoker

LUNG CANCER HISTOPLASMOSIS

The Lung Nodule Biomarker: Goal

11

Problem: Intermediate Risk Nodules

The incidentally detected IPN population: roughly 1.2 million per year

Clinical risk model

Kammer and Massion. J Thorac Dis. 2020

Commercially Available Nodule Management Biomarkers*

	Measurement	Validation Cohort	Sens/Spec	Proposed Use	Availability/ Clinical Utility
Nodify CDT (Biodesix)	Blood auto-antibody panel: ELISA	Patients: 1613 Cancers: 61	Sens: 37% Spec: 91%	 Nodule management (intermed. risk) Positive = aggressive management 	Yes / No clinical utility trial
Nodify XL2 (Biodesix)	Plasma Protein: MRM Mass Spectrometry + 5 Clinical characteristics (Mayo)	PANOPTIC: Patients: 392 (178*) Cancers: 29	Sens 97% Spec: 44%	Nodule management (low-intermed risk) Pretest Probability Cancer < 50%	Yes/Clinical utility trials initiated (ALTITUDE) NCT04171492
Percepta GSC (Veracyte)	Bronchial epithelial cells: mRNA/gene expression profile	AEGIS-1/AEGIS-2 Patients: 639 Cancers: 487	Sens: 88% Spec: 47%	Nodules (intermed risk) undergoing bronchoscopy • Negative = radiologic surveillance	Yes / Clinical Utility extrapolated
Percepta Nasal Swab (Veracyte)	Nasal epithelial cells: mRNA/gene expression + clinical risk factors	AEGIS-2 Patients: 130 Cancers: 66	Sens: 91% Spec: 52%	 Nodules (intermediate risk) Negative = radiologic surveillance 	Yes/ No clinical utility trial
REVEAL (MagArray)	Blood tumor mRNA by Nanostring (Biochip) + clinical	Patients: 97 Cancers: 51	Sens: 94% Spec: 33%	Nodules (intermediate risk) Low score = radiologic surveillance 	Yes/ No clinical utility trial

Large clinical validation/registry studies ongoing - LungLB (LungLifeAI), DELFI, GRAIL, DetermaDx Lung, bioAffinity, 4-MP, many multi-cancer platforms

Sears, Mazzone. Clin Chest Med. 2020. Trivedi et al. Biomed Research Clin Practice. 2018. Kossenkov et al. Cancer Res. 2019. Ostrin et al. J Thorac Oncol. 2021. Mazzone et al. J Clin Oncol. 2021 (abst, 8551)

Trend: Pan-Cancer Biomarkers Galleri (GRAIL)

Targeted Genome Methylation Assay using cfDNA

Prospective collection/retrospective analysis (CCGA)

B

Sensitivity (±95% CI)

0.0%

- 15,254 patients (8584 cancer, 6670 non-cancer)
- 142 sites in N. America
- Clinical validation on 5309 participants

Sens: 51.5% (75% Lung Cancer) Spec: 99.5%

Klein et al. Annals Oncol. 2021;32(9):1167-1177.

INDIANA UNIVERSITY MEL

Sensitivity (±95% CI) 95.2% 90.7 100% 79.5% 75% 50% 21.9% 25% 0% Ш 111 IV (35/44) (21/96)(138/145)(107/118)Sensitivit <25%
25% to <50%
50% to <75%</pre> 20.0%

Lung

Trend = Less Invasive Percepta - (AEGIS-1 and -2)

Bronchial airway cells, mRNA gene panel

Low-intermediate risk nodule/non-dx bronchoscopy

"Rule-Out" Biomarker

Registry = of 34% down-classified,

78% had change in clinical practice

Est. 74% decrease planned procedures (initially)

Cost: predicted cost-effective (ICER \$15,052/QALY)¹

Silvestri et al. NEJM 2015; 373:243-251. ²Lee et al. CHEST. 2021; 159(1):401-412 3Mazzone et al. J Clin Oncol. 2021 (abst, 8551)

Trend: Confirming Clinical Utility Nodify XL2 - ALTITUDE Study

Low-intermediate risk incidental nodule "Rule-Out" Biomarker, blood, MRM proteomics

LCS: Radiomics vs Radiologists: LUMAS

Ardila et al. Nature Medicine. 2019

Radiomics and imaging biomarkers

T

Lee et al. European J Radiol. 2017;86:297-307

Trend: Combining Modalities for Nodule Diagosis Combined Blood, Imaging, Clinical Biomarkers (CBM)

Conclusions

- Rapid expansion of biomarkers in conjunction with imaging
 - Lung cancer screening/Earlier lung cancer diagnosis
 - Nodule risk assessment
- Increasing biomarker availability*
- Trends in early lung cancer diagnosis
 - Less invasive
 - Liquid biopsies
 - Prediction of utility
 - Clinical utility studies to determine if estimates predict usefulness in practice
 - Radiomics

Ш

Combining clinical, radiologic and biomarker characteristics to improve performance