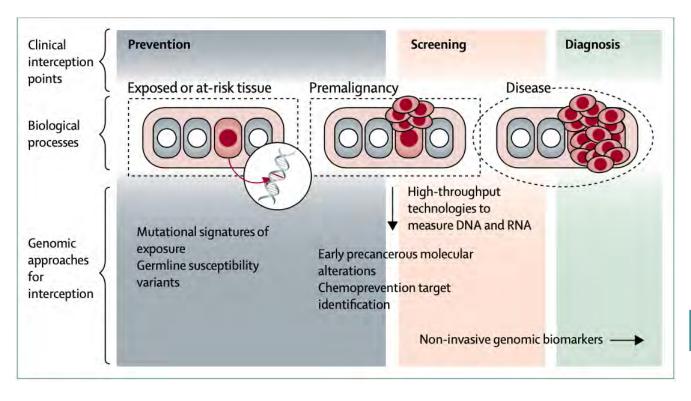
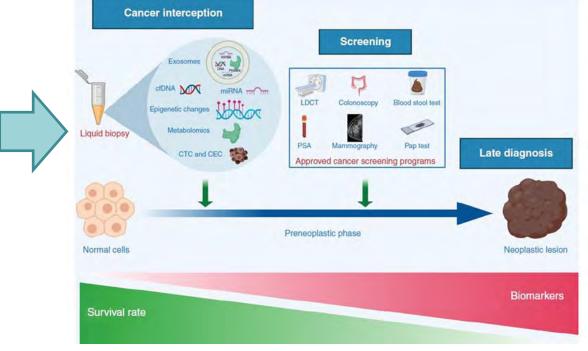
Methylation, Circulating Tumor Cells And Exosomes, Other Efforts For Early Lung Cancer Detection

Luis E. Raez MD FACP FCCP
Chief Scientific Officer & Medical Director
Memorial Cancer Institute/Memorial Health Care System
Co-Director of MCIFAU Florida Cancer Center of Excellence
Clinical Professor of Medicine/Herbert Wertheim College of Medicine
Florida International University

Disclosures


AstraZeneca Advisory Board AstraZeneca, Lilly Oncology, LOXO, Velos, Bio Grant/Research Support


i3 Health and FLASCO have mitigated all relevant financial relationships

Liquid vs. tissue biopsies in cancer interception

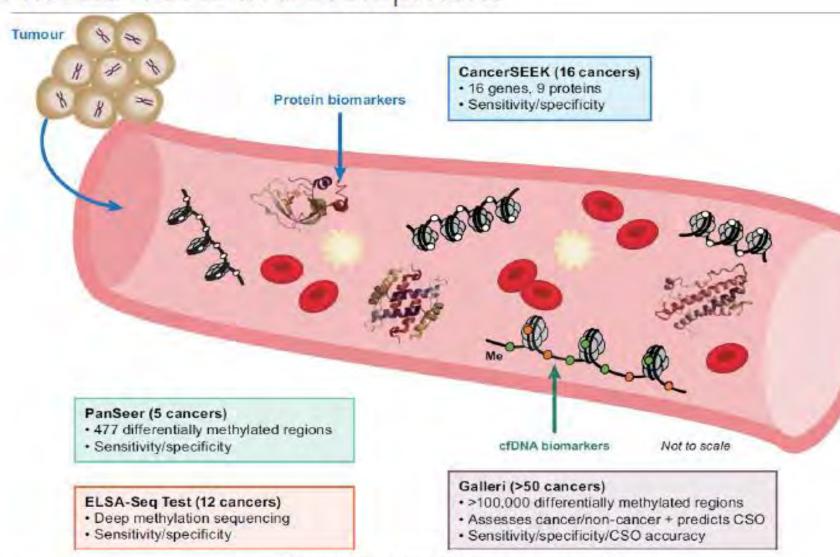
Model 1 for cancer interception Model 2 for mestasis interception (Avoiding dissemination: metastasis interception) (Avoiding cancer) Predisposition Early diagnosis Monitoring Late detection Dissemination Liquid biopsy Liquid biopsy Tissue biopsy Liquid biopsy Tissue biopsy Cancer Survival rates interception

Opportunities for Cancer Interception



Mj. Serrano, (Raez LE) et al. Cancer Discov 2020;10:1635-44

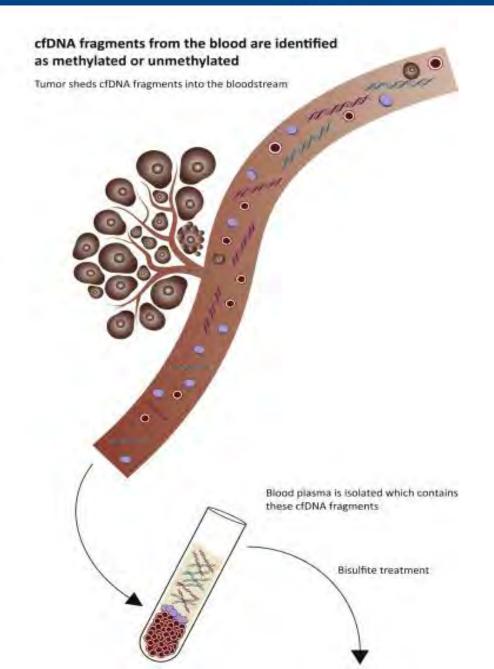
Latency between detection of clonal hematopoiesis in the peripheral blood and clinical manifestation Detection of CH Therapeutic Manifestation of in peripheral blood window? CH sequelae Cardiovascular disease Mutant DNMT3A 个 HSC TET2 Inflammatory -ASXL1 stress JAK2 Therapy-related myeloid malignancies Most CH clones remain stable for decades Cytotoxic -**TP53** stress PPM1D CHEK2 个个


Time

Medina JE, et al. J Immunother Cancer 2023;11:e006013.

Multiple Blood-Based MCED Tests in Development

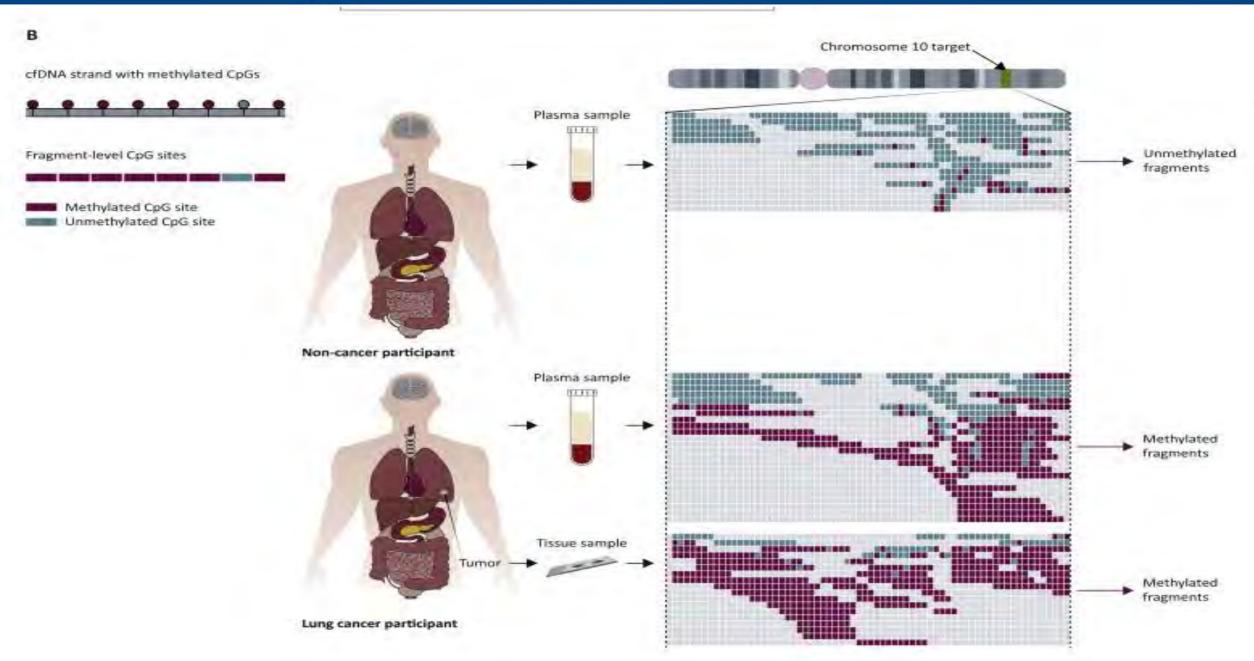
- Standardized criteria not established (e.g., validity, benefit-risk, clinical utility)
- Study comparisons challenging (e.g., differences in eligibility, cancers targeted for detection, methodology, and performance metrics)


DNA Methylation

DNA methylation is an epigenetic mechanism that occurs by the addition of a methyl (CH₃) group to DNA, thereby often modifying the function of the genes and affecting gene expression.

The most widely characterized DNA methylation process is the covalent addition of the methyl group at the 5-carbon of the cytosine ring resulting in 5-methylcytosine (5-mC), also informally known as the "fifth base" of DNA. These

methyl groups project into t


N⁶-Methyladenine, 6mA 5-Methylcytosine, 5mC N⁴-Methylcytosine, 4mC

^{*}previously defined from analysis of existing datasets from cfDNA, tissue from GRAIL trials and public databases

Galleri Test (Grail)

- Specificity for cancer signal detection was 99.5%
- Overall sensitivity for cancer signal detection was 51.5%; sensitivity increased with stage

Stage I: 16.8%, stage II: 40.4%, stage III: 77.0%, stage IV: 90.1%.

Stage I-III sensitivity was 67.6% in 12 pre-specified cancers that account for approximately two-thirds of annual USA cancer deaths

- Cancer signals were detected across >50 cancer types.
- Overall accuracy of CSO prediction in true positives was 88.7%

The Circulating Cell-free Genome Atlas Study, sub-study 3: clinical validation

CCGA3: Cancer Signal Detection: Specificity and Overall Sensitivity

	Cancer (n=2823)	Non-cancer (n=1254)	Total (n=4077)
Test Positive	1453	6	1459
Test Negative	1370	1248	2618

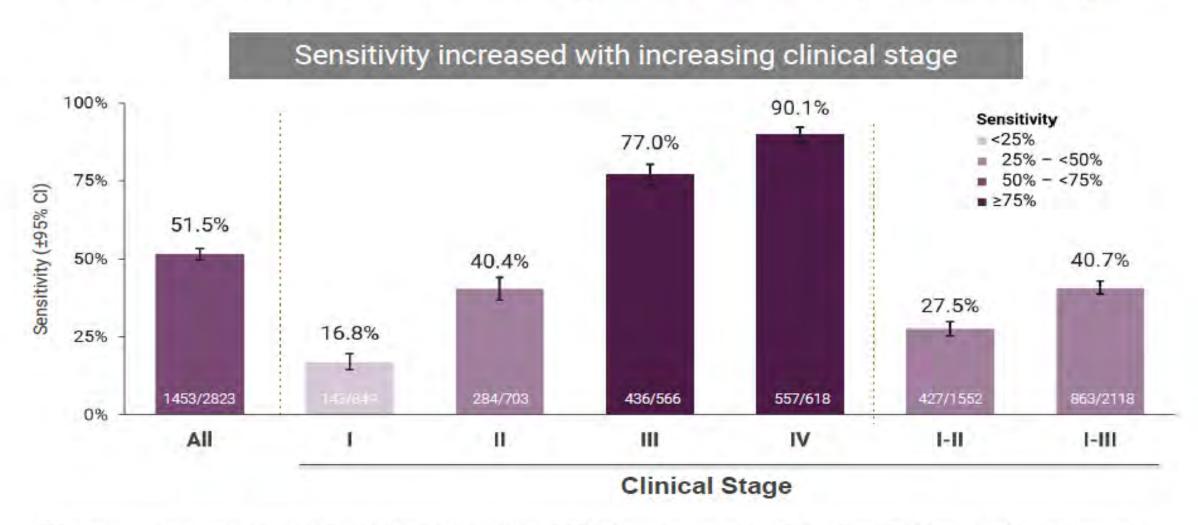
Specificity:

99.5%

(95% CI: 99.0-99.8%)

0.5%

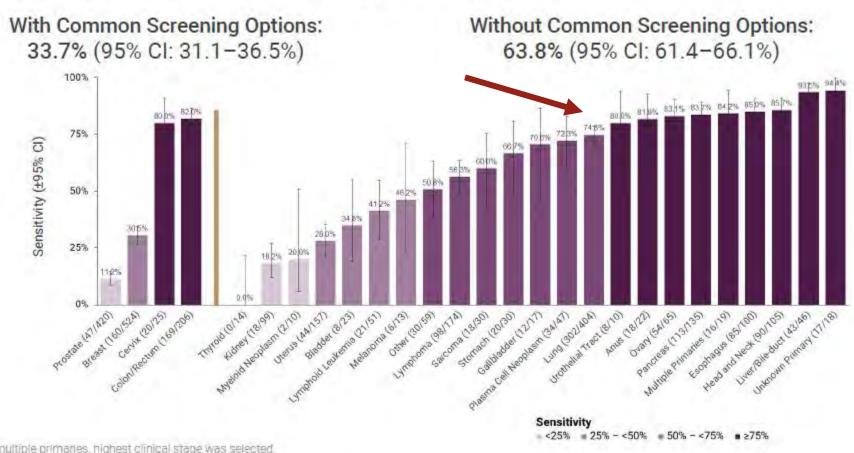
false-positive rate


Sensitivity:

51.5%

(95% CI: 49.6-53.3%)

CCGA3: Sensitivity of Cancer Signal Detection by Clinical Stage



[&]quot;All" comprises all cancer stages, including missing stage and cancer classes that do not have staging per American Joint Committee on Cancer (AJCC) staging manual.

Cl. confidence interval.

Klein E, et al. Ann Oncol. 2021;32(9):1167-1177. DOI: 10.1016/j.annonc.2021.05.806.

CCGA3: Sensitivity of Cancer Signal Detection in Cancers With and Without Common Screening

For multiple primaries, highest clinical stage was selected. Cl. confidence interval

Klein E, et al. Ann Oncol 2021;32(9):1167-1177. DOI: 10.1016/j.annonc.2021.05.806

TABLE 4. Galleri Test Trials Summary²⁶⁻²⁹

Trial name	Status	Estimated completion	Trial design	Purpose	Participants
CCGA	Active, not recruiting	March 2024	Prospective, observational, longitudinal	Characterize the cfDNA in the blood of patients with cancer and without cancer	15,254 participants ≥20 years across 141 sites in the United States and Canada
STRIVE	Active, not recruiting	May 2025	Prospective, observational, longitudinal, cohort	Validate the test for early detection of cancer	99,481 women ≥18 years at time of mammogram screening across 35 sites in the United States
SUMMIT	Enrolling by invitation	August 2030	Prospective, observational, longitudinal, cohort	Validate the test by measuring cancer incidence	Estimated 50,000 participants 50-77 years without a cancer diagnosis, but with variable risks for cancer (specifically lung) at enrollment from London, United Kingdom
PATHFINDER	Recruiting	January 2022	Prospective clinical trial cohort	Evaluate implementation of test in clinical practice	Estimated 6200 participants ≥50 years, split into elevated risk group and nonelevated risk group

^{26.} The Circulating Cell-free Genome Atlas Study (CCGA). ClinicalTrials.gov. Updated August 31, 2020. Accessed October 19, 2020. clinicaltrials.gov/ct2/show/NCT02889978?term=NCT02889978&draw=2&rank=1

^{27.} The STRIVE Study: Development of a Blood Test for Early Detection of Multiple Cancer Types. ClinicalTrials.gov. Updated July 31, 2020. Accessed October 19, 2020. clinicaltrials.gov/ct2/show/NCT03085888?term=NCT03085888&draw=2&rank=1

^{28.} The SUMMIT Study: A Cancer Screening Study. ClinicalTrials.gov. Updated May 2, 2019. Accessed October 19, 2020.

clinicaltrials.gov/ct2/show/NCT03934866?term=NCT03934866&draw=2&rank=1clinicaltrials.gov/ct2/results?cond=&term=NCT03934866&cntry=&state=&city=&dist=29. Assessment of the Implementation of an Investigational Multi-Cancer Early Detection Test Into Clinical Practice. ClinicalTrials.gov. Updated August 5, 2020. Accessed October 19, 2020. clinicaltrials.gov/ct2/show/NCT04241796?term=NCT04241796&draw=2&rank=1

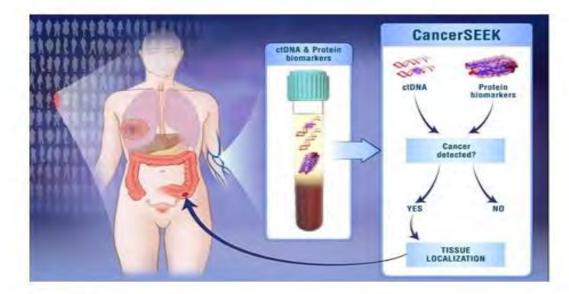
REFLECTION

A prospective, observational study of patients administered the MCED test as part of their medical care in a real-world setting

Study Objectives Study Design Purpose of the Study To understand MCED test performance in clinical settings To understand MCED test Blood drawn Clinical follow up ~35,000 adult Initial MCED Providers share impact on patients and participants^a and processedb test results to test results performed at healthcare providers recruited over providers with patients provider's discretion **Primary Objective** 24 months · To assess the performance of MCED in a real-world setting Active data capture^c (up to 5 years from enrollment): MCED test result(s), diagnostic/treatment data, patient-reported outcomes Passive data capture (after active phase)d: linkage to cancer registries and vital statistics; participant screening continued per standard of care

First patient first visit was August 23, 2021.

"Participants will be recruited to an intervention arm; there will also be an external control arm. "Participants may receive subsequent MCED test(s) post baseline. "Patients actively followed through medical record data collection and self-reported questionnaires administered pre-test, post-test, 6- and 12-months post consent, and annually for 5 years. "Patients passively followed through linkages to cancer registries and other administrative health databases up to time of death, loss to follow-up, withdrawal of informed consent, or per institutional guidelines on duration of data collection, whichever occurs sooner.


MCED, multi-cancer early detection.

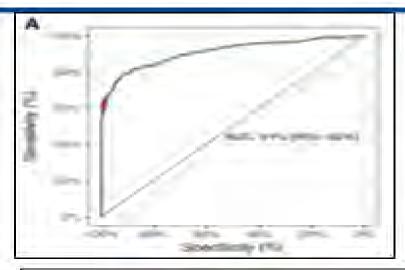
(Cancerseek, Thrive-Exact Sciences)

Science

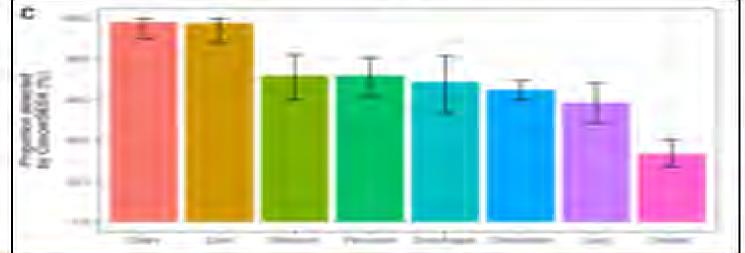
Detection and localization of surgically resectable cancers with a multi-analyte blood test

Cohen et al. Science 2018

Multiplex PCR analysis of circulating cell-free tumour DNA (ctDNA) enables the detection of mutations at 2,001 genomic positions across 16 genes, whereas levels of the protein biomarkers are assessed using immunoassays.


The eight proteins are:

cancer antigen 125, carcinoembryonic antigen, cancer antigen 19-9, prolactin, hepatocyte growth factor, osteopontin, myeloperoxidase, and tissue inhibitor of metalloproteinases 1.



Science

Detection and localization of surgically resectable cancers with a multi-analyte blood test

- N=1005 patients with eight different types of clinically detected cancer (early stage)
- N=812 healthy controls
- Platform: cfDNA (DNA in regions of interest from 16 genes) and proteins (39)
- Median Sensitivity: 70%
- Median Specificity: 99%

Cohen et al. Science 2018

Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention (Cancerseek, Thrive-Exact Sciences)

- Blood test that detects ctDNA mutations in 16 genes and 8 protein biomarkers of cancer in a prospective, interventional study of 10,006 women who were 65 to 75 years old and who had no prior history of cancer. Positive blood tests were followed by PET-CT.
- Detection: Of 96 cancers incident during the study period, 26 were first detected by blood testing and 24 additional cancers by conventional screening. Fifteen of the 26 patients in whom cancer was first detected by blood testing underwent PET-CT imaging, and 11 patients developed signs or symptoms of cancer after the blood test that led to imaging procedures other than PET-CT.
- Specificity and PPV of blood testing alone were 98.9% and 19.4%, respectively, and combined with PET-CT, specificity and PPV increased to 99.6% and 28.3%.

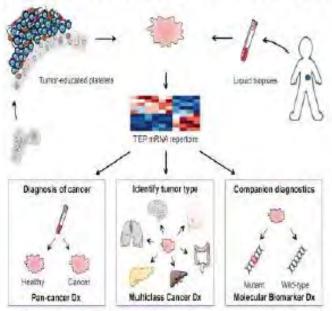
- The blood test first detected 14 of 45 cancers (31%) in seven organs for which no standard-of-care screening test is available.
- Of the 26 cancers first detected by blood testing, 17 (65%) had localized or regional disease. Of the 15 participants with positive blood tests as well as positive PET-CT scans, 9 (60%) underwent surgery with curative intent.
- Blood testing could be combined with conventional screening, leading to detection
 of more than half of the total incident cancers observed during the study period.
 Blood testing did not deter participants from undergoing mammography, and
 surveys revealed that 99% of participants would join a similar, subsequent study if
 offered.
- Only 0.22% underwent an unnecessary invasive diagnostic procedure as a result of a false-positive blood test.

Lennon, AM. Vol 369, issue 6499, April 2020

TABLE 3. CancerSEEK Trials Summary^{23,24}

Trial name	Status	Estimated completion	Trial design	Purpose	Participants
DETECT-A ^a	Complete	() 	Prospective, interventional	Identify multiple cancer types using test	10,006 women 65-75 years old with no history of cancer
ASCEND	Recruiting	June 2020	Prospective, observational, cohort	Validate test	Estimated 3000 participants ≥50 years; 1000 with a cancer diagnosis and 2000 with no prior history of cancer in the United States

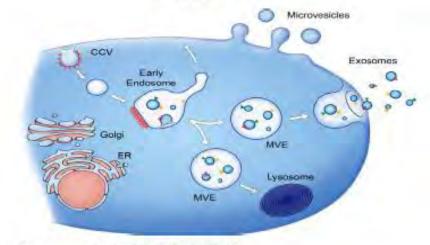
^{*}Trial is not registered on clinicaltrials.gov; publication results used for summary.


Lennon AM, Buchanan AH, Kinde I, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369(6499):eabb9601. doi: 10.1126/science.abb9601

Detecting Cancers Earlier Through Elective Plasma-based CancerSEEK Testing (ASCEND). ClinicalTrials.gov. Updated January 14, 2020. Accessed October 19, 2020. clinicaltrials.gov/ct2/show/NCT04213326?term=NCT04213326&draw=2&rank=1

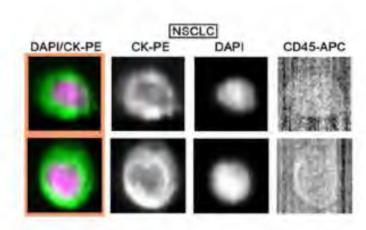
Liquid Biopsy: RNA Isolation from Platelets, Exosomes and CTCs

Tumor "Educated" Platelets



Myron G. Best, et al., Cancer Cell, 2015

Tumor "Educated" Platelets


- Timely processing
- Labile (cold, shaking)

Exosomes

Raposo et al, J Cell Biol 2013

CTCs

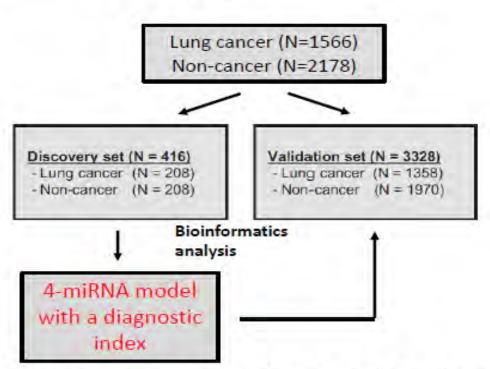
Main Challenges

Exosomes

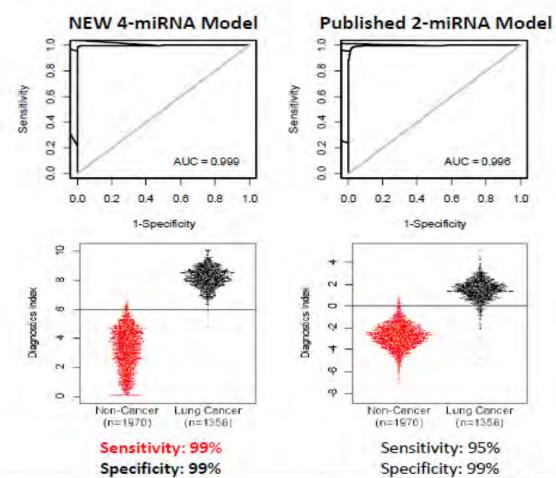
- Timely processing
- Time consuming processing
- Exosome isolation step

CTC

- Variable numbers
- Timely processing
- CTC isolation step



A Novel Blood-Based microRNA Diagnostic Test With Very High Accuracy For Early Lung Cancer Screening And Monitoring


Andrew Zhang¹ and Hai Hu²

¹Del Norte High School, San Diego, CA; ²Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA USA

The New 4-miRNA Diagnostic Model: Comparison with the Published 2-miRNA Model

 The new 4-miRNA diagnostic model had superior performance (ROC, sensitivity & specificity) than the original published model, reaching nearly perfect accuracy in detecting lung cancer

TAKE HOME MESSAGE

- A novel blood based diagnostic model based on expression of 4 miRNAs has been developed that showed extraordinary accuracy (99% sensitivity and specificity), and especially demonstrated >99% sensitivity in detecting early stage lung cancer such as stage 1 cancer
- The performance of the new diagnostic model is superior to that of the original published model in all clinically relevant patient subgroups. The magnitude of improvement is clinically important to minimize false negatives if the model will be developed into a test to target large population size.
- The 4 miRNAs are likely tumor derived, and therefore the novel diagnostic test may also have the potential to be a tumor recurrence monitoring test.
- Acknowledgement: I want to thank the original study authors for making the data
 publicly available, and would like to thank all the patients and participants who donated
 blood to this important study.

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

760 samples from patients with metastatic disease were enrolled.

44 gastric cancers (GC), 212 colorectal cancers (CRC), 320 non-small cell lung cancers (NSCLC), 24 breast cancers (BC), and 88 prostate cancers (PC).

Patient samples were from USC Norris Comprehensive Cancer Center, Memorial Cancer Institute or University Hospital Essen, West German Cancer Center.

Ten milliliters of blood were collected in each of two tubes containing a proprietary nucleic acid preservation cocktail and transferred to Liquid Genomics, Inc.

Table 1. Detection frequencies and relative values of PD-L1 gene expression in plasma from patients				
with various cancer types and in cancer free individuals				
Plasma from	Detection frequency (%)	Detection frequency	P values for cancer-healthy	
individuals with		by IHC (ref.)	difference	
No cancer	0.0 (0/19)	-	-	
Gastric Ca.	31.8 (14/44)	29.6 (24)	0.006	
CRC	44.8 (96/212)	25.8 (25)	< 0.001	
NSCLC	63.8 (204/320)	25.0(26)	< 0.001	
Breast Ca.	25.0 (24/96)	56.6 (27)	0.012	
Prostate Ca.	23.9 (21/88)	52.2 (28)	0.022	
All cancer	47.2 (359/760)	-	< 0.001	

Table 1 Detection for some of a lating relating of DD I 1 come assumed in the alarm from actions

T. Ishiba, (LE Raez), et al. Frequencies and expression levels of programmed death ligand 1(PD-L1) in circulating tumor RNA (ctRNA) in various cancer types. Biochem Biophys Res Commun. 2018 Jun 7;500(3):621-625.

Raez et al. Cancer Drug Resist 2021;4:1080-70 DOI: 10.20517/cdr.2021.78

Cancer Drug Resistance

Original Article

Using cfRNA as a tool to evaluate clinical treatment outcomes in patients with metastatic lung cancers and other tumors

Luis E. Raez¹, Kathleen Danenberg², Daniel Sumarriva¹, Joshua Usher², Jacob Sands³, Aurelio Castrellon¹, Pablo Ferraro¹, Adriana Milillo¹, Eric Huang⁴, Patrick Soon-Shiong², Sandeep Reddy², Peter Danenberg⁸

Department of Blochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA 90089, USA.

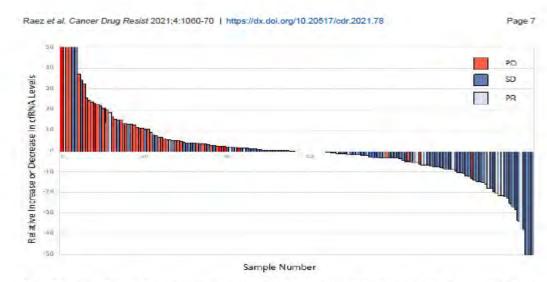
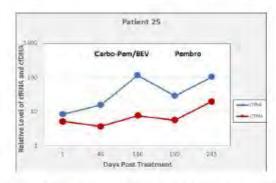



Figure 5. Changes in total cfRNA vs. outcome in response to various therapies across different tumor types. The bars represent analyses of 154 BC, 84 CRC, 135 NSCLC patient samples. BC: Breast cancer; CRC: colorectal cancer; NSCLC: non-small cell lung cancer.

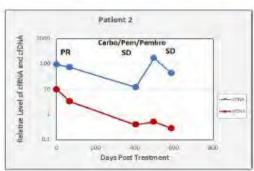
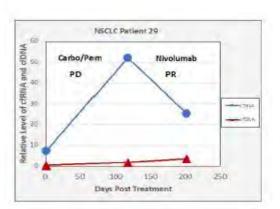



Figure 3. Changes in levels of cfRNA and cfDNA during therapy, cfRNA and cfDNA were measured at initiation of therapy and at various times during the chemotherapy using PCR amplification of B-actin. Treatment efficacy was determined by CT scans. PCR: Polymerase chain reaction.

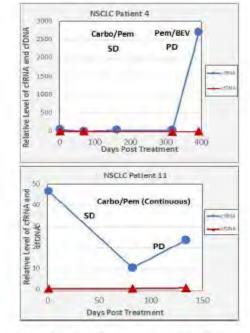
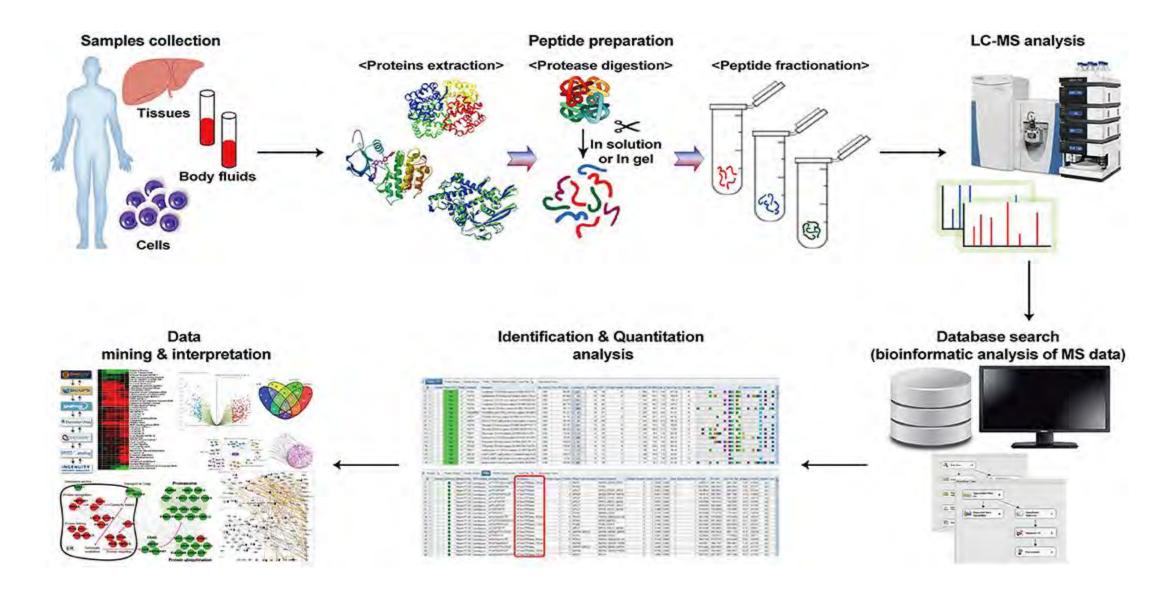


Figure 4. Changes in cfRNA levels during therapy when cfDNA is unmeasurable. cfRNA and cfDNA were measured at initiation of treatment and at various times during chemotherapy using PCR amplification of B-actin. Treatment efficacy of chemotherapy regimens was determined by CT scans. PCR: Polymerase chain reaction.

¹Thoracic Oncology Program, Memorial Cancer Institute/Memorial Healthcare System, Florida International University, Miami, FL 33199, USA.

²Nanth Health, Culver City, 2040 E Mariposa Ave, El Segundo, CA 90245, USA.

Thoracic Oncology Program, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.


⁴Burning Rock, Beijing 100022, China.

Proteomics

- Proteomics is the study of the entire set of proteins expressed in a cell, tissue, or individual.
- With the advent of mass spectrometry (MS)-based protein analysis technology, large-scale protein analysis has now become widely used.
- Proteomics involves a wide range of processes such as protein expression profiling, protein modifications, protein-protein interactions, protein structure, and protein function. The results obtained from such tasks can be used to decipher disease processes, provide diagnosis and prognosis of diseases, aid in drug development, and deliver the basis for biological discovery.
- With the development of proteomics technology and its application to various diseases, especially cancer, significant progress has been made in identifying clinically applicable biomarkers and new therapeutic targets.

Proteomics

Advances in Respiratory Medicine 2021, vol. 89, no. 4, pages 419-426

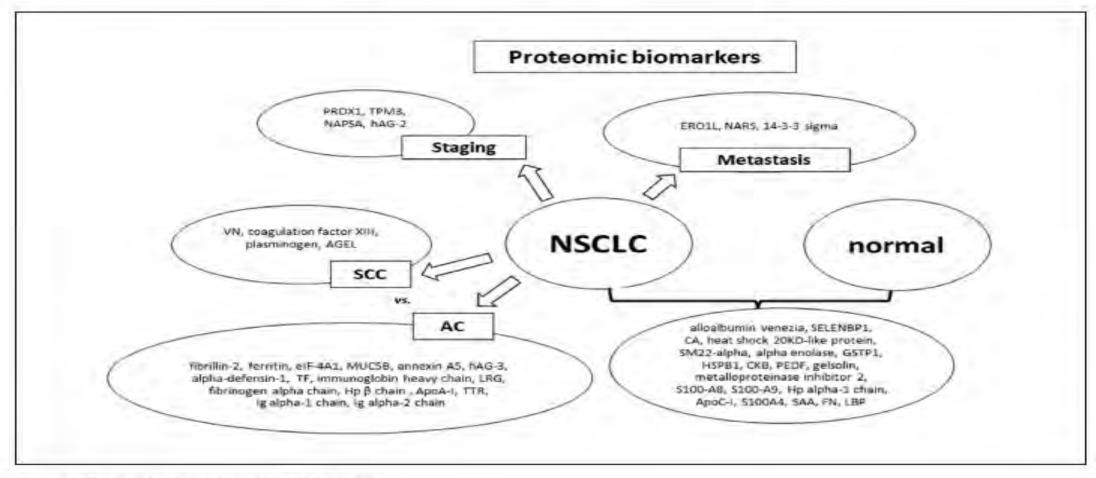


Figure 1. Proteomic biomarkers of NSCLC patients

AC — adenocarcinoma; AGEL — gelsolin; CA — carbonic anhydrase; CKB — creatine kinase brain-type; eIF-4A1 — eukaryotic translation initiation factor 4A1; ER01L — ER01-like protein alpha; FN — fibronectin; GSTP1 — glutathione S-transferase P1; hAG-2 — anterior gradient protein 2 homolog; hAG-3 — anterior gradient protein 3; Hp — haptoglobin; HSPB1 — heat shock protein beta-1; LBP — lipopolysaccharide binding protein; LRG — leucine-rich alpha-2-glycoprotein; MUC5B — mucin-5B; NAPSA — napsin-A; NARS — asparagine-tRNA ligase; NSCLC — non-small cell lung cancer; PEDF — pigment epithelium-derived factor; PRDX1 — peroxiredoxin 1; SAA — serum amyloid A; SCC — squamous cell carcinoma; SELENBP1 — selenium-binding protein 1; TF — transferrin; TPM3 — tropomyosin alpha-3 chain; TTR — transferrin; VN — vitronectin

