Immunotherapy-Related Cytopenias

Vania Phuoc, MD

Ashleigh Palmisano, APRN

Objectives

- Incidence and common presentations of immunotherapy-related cytopenias
- Workup/diagnosis of immunotherapy-related thrombocytopenia, anemia, and neutropenia
 - Immune Thrombocytopenia (ITP)
 - Autoimmune Hemolytic Anemia (AIHA)
 - Autoimmune Neutropenia
- Management of immunotherapy-related cytopenias
- Clinical cases
- Q&A, please share your experiences!

Incidence of Immunotherapy-Related Cytopenias

Comprehensive NCCN Guidelines Version 1.2023 Management of Immunotherapy-Related Toxicities

NCCN Management of Immunotherapy-Related Toxicities Panel Members Summary of the Guidelines Updates

Immune Checkpoint Inhibitor-Related Toxicities

- Principles of Routine Monitoring (IMMUNO-1)
- Conditions Signs and Symptoms (IMMUNO-2)
- Infusion-Related Reactions (ICI_INF-1)
- Cardiovascular Toxicity (ICI CARDIO-1)
- Dermatologic Toxicity

NCCN

- Maculopapular Rash (ICI DERM-1)
- Pruritus (ICI DERM-2)
- Blistering Disorder (ICI DERM-3)

National

Cancer

Network[®]

- Lichen Planus and Lichenoid Diseases (ICI DERM-4)
- Psoriasis/Psoriasiform Diseases (ICI DERM-5)
- Oral Mucosa Inflammation (ICI_DERM-6)
- Sicca Syndrome/Oral Dysesthesia (ICI_DERM-7)
- Endocrine Toxicity
- Hyperglycemia/Diabetes Mellitus (ICI ENDO-1)
- Thyroiditis (ICI ENDO-2)
- Hypophysitis (ICI ENDO-4)
- Fatigue (ICI FTG-1)
- Gastrointestinal Toxicity
- Diarrhea/Colitis (ICI GI-1)
- Hepatobiliary Toxicities (ICI GI-4)
- Elevation in Amylase/Lipase (ICI GI-6)
- Acute Pancreatitis (ICI GI-7)
- Musculoskeletal Toxicity
- Inflammatory Arthritis (ICI_MS-1)
- Myalgias/Myositis (ICI MS-2)
- Polymyalgia Rheumatica/Giant Cell Arteritis (ICI MS-3)

- Nervous System Toxicity
- Myasthenia Gravis (ICI_NEURO-1)
- Guillain-Barré Syndrome (ICI NEURO-2)
- Peripheral Neuropathy (ICI_NEURO-3)
- Aseptic Meningitis (ICI_NEURO-4)
- Encephalitis (ICI NEURO-4)
- Demvelinating Disease (ICI NEURO-5)
- Ocular Toxicity (ICI OCUL-1)
- Pulmonary Toxicity (ICI_PULM-1)
- Renal Toxicity (ICI-RENAL-1)
- Principles of Immunosuppression (IMMUNO-A)
- Principles of Immunotherapy Patient Education
- (IMMUNO-B)
- Principles of Immunotherapy Rechallenge (IMMUNO-C)

What about checkpoint inhibitor-related cytopenias?

Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Index Table of Contents

Discussion

Find an NCCN Member Institution: https://www.nccn.org/home/memberinstitutions.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise indicated.

See NCCN Categories of Evidence and Consensus.

Lymphocyte Engager-Related Toxicities Lymphocyte Engager-Related Toxicities

Incidence of Checkpoint Inhibitor-Related Cytopenias

Cytopenia	Pembrolizumab	Nivolumab	Ipilimumab
Thrombocytopenia	12 – 34%	< 1%	3%
Grade 3-4 (PLT < 50/μL)	4 – 10%	NR	NR
Anemia	17 — 54%	26 – 41%	41%
Grade 3-4 (Hgb < 8.0 g/dL, req PRBCs)	0.5 — 24%	≤ 3%	6%
Neutropenia	7 – 30%	11 – 24%	< 1%
Grade 3-4 (ANC < 1000/mm3)	1 – 11%	≤ 2%	NR
ITP, AIHA, or Autoimmune	≤ 1% overall		
Neutropenia	Significantly greater percentage of G3-4 heme toxicities		

NR = Not Reported; Hgb = Hemoglobin; ANC = absolute neutrophil count; ITP = Immune Thrombocytopenia, AIHA = Autoimmune Hemolytic Anemia Brahmer et al., JCO, 2017

5

Why do these immunotherapy-related cytopenias happen?

Incidence of Cytopenias

- Observational study from 3 French registries/databases of checkpoint-inhibitor (CPI) toxicities (Delanoy et al., Lancet Haematol., 2018)
- 35 of 948 patients with hematologic immunotherapy-related adverse events (irAEs) autoimmune in nature
- Tumor types: Melanoma (43%), NSCLC (34%), Lymphoma (11%)
- Immunotherapy: Nivolumab (57%), Pembrolizumab (40%), Atezolizumab (3%)

	All patients (n=35)				
Type of haem-irAE					
Neutropenia	9 (26%)				
Anaemia	9 (26%)				
Thrombocytopenia	9 (26%)				
Pancytopenia or aplastic anaemia	5 (14%)				
Bicytopenia	2 (6%)				
Pure red cell aplasia	1 (3%)				
Class of anti-PD-1 or PD-L1 immunotherapy given					
Nivolumab	20 (57%)				
Pembrolizumab	14 (40%)				
Atezolizumab	1 (3%)				
Case causality assessment between anti-PD haem-irAE*)-1 or PD-L1 and				
Certain	18 (51%)				
Probable	17 (49%)				
Treatment of haem-IrAEs					
Steroids, oral	22 (63%)				
Steroids, intravenous and oral	5 (14%)				
Immunoglobulins, intravenous	11 (31%)				
Rituximab	7 (20%)				
Supportive care					
Transfusion (red blood cells or platelets)	15 (43%)				
Granulocyte colony-stimulating factor	12 (34%)				
Erythropoiesis-stimulating drug	2 (6%)				
Thrombopoietin agonist	3 (9%)				
Deaths					
Cancer progression	9 (26%)				
	2 (6%)				
Haem-irAE related to anti-PD-1 or PD-L1 treatment					
	1(3%)				

	All patients (n=35)	Neutropenia (n=9)	Autoimmune haemolytic anaemia (n=9)	Immune thrombocytopenia (n=9)	Pancytopenia or aplastic anaemia (n=5)	Other* (n=3)	p value†
Age, years							
Median	65 (51-75)	70 (51–77)	64 (51-75)	66 (52–76)	62 (52-74)	69 (53-77)	
Range	30-90	34-90	30-89	35-81	54-78	49-82	
Previously exposed to anti-CTLA4	6 (17%)	0	3 (33%)	2 (22%)	1 (20%)	1 (33%)	
Drug class involved							
Anti-PD-1	34 (97%)	9 (100%)	8 (89%)	9 (100%)	5 (100%)	3 (100%)	
Anti-PD-L1	1(3%)	0	1 (11%)	0	0	0	
Time to onset, weeks	10·1 (3·6–24·1)	10-0 (3-1–19-4)	3.9 (2.5–18.0)	10-1 (4-1-20-5)	21.7 (4.0-25.7)	10.0 (3.4–20.5)	0.427
Maximum severity							
Grade 2	3 (9%)	1 (11%)	0	1 (11%)	1 (20%)	0	
Grade 3	5 (14%)	1 (11%)	1 (11%)	1 (11%)	1 (20%)	1 (33%)	
Grade 4	25 (71%)	6 (67%)	8 (89%)	7 (78%)	2 (40%)	2 (67%)	
Grade 5	2 (6%)	1 (11%)	0	0	1 (20%)	0	
Duration at grade 2 or worse, weeks	4.2 (1.7-8.9)	2.4 (1.6–10.1)	2.4 (1.7-8.9)	4.4 (1.7-11.3)	6.0 (2.4–12.4)	8.0 (2.7-12.3)	0.422
Follow-up of haem-irAE, weeks	19-4 (9-4-55-4)	18-4 (9-3-55-3)	9.7 (5.3-25.3)	20.4 (10.9–65.3)	28.7 (8.7-33.1)	46.0 (9.2-60.0)	
Resolution at final follow-up	21 (60%)	6 (67%)	6 (67%)	7 (78%)	1 (20%)	1 (33%)	0.136
Rechallenge	7 (20%)	3 (33%)	1 (11%)	3 (33%)			
Recurrence of same haem-irAE after rechallenge	3/7 (43%)	2/3 (67%)	0	1/3 (33%)			

Data are n (%) or median (IQR) unless otherwise stated. CTLA4=cytotoxic T-lymphocyte protein 4. Haem-irAE=haematological immune-related adverse event. PD-1=programmed cell death 1. PD-L1=programmed cell aplasia. †Significance threshold of p<0-05.

Table 3: Characteristics of haem-irAEs by type

Delanoy et al., Lancet Haematol., 2018

References	Type of Study	Patients	Frequency	Main Findings	CPI Interruption
Delanoy N et al. (2019) [17]	Observational study	745	3.7%	The most-frequent hematologic IRAEs after anti-PD-1 or anti-PD-L1 were AIHA, ITP or neutropenia (26%), followed by pancytopenia or aplastic anemia (14%). The median time of onset was 10 weeks; most events were grade 4 and resolved after immunosuppressive therapy.	80% of the cases 20% rechallenge
Michot JM et al. (2019) [19]	Review	63	3.6%	An incidence of 0.7% for grades 3 to 4 IRAEs, mostly immune cytopenias (17 to 29%), aplastic anemia (19%) and HLH (11%). The median time of onset was of 10 weeks. Resolution varied from 25% for aplastic anemia to 80% for ITP and AIHA, and 14% died. The risk of recurrence after CPI rechallenge was around 50%.	Not reported
Davis E.J. et al. (2019) [20]	Observational study	164	1% (among all reported adverse events)	AIHA was the most common, mostly associated with melanoma and lung cancer; 23% had an extra-hematological IRAEs; mortality was 11% but increased to 23% in the case of HLH.	Not reported
Zaremba A. et al. (2021) [18]	Observational study	6961	0.14%	10 patients experienced grade 4 neutropenia (60% possibly due to metamizole), with median time of onset of 6.4 weeks; 40% required systemic steroids, and neutropenia responded to G-CSF. No recurrence was reported after CPI rechallenge.	70%
Kramer R et al. (2021) [16]	Observational study	7626	0.6%	Mostly autoimmune cytopenias (28–34%), rarely HLH (4%), aplastic anemia (2%), coagulation dysfunction (2%) and acquired hemophilia A (2%). The median time of onset was 25 weeks. 60% required hospitalization, and 80% had complete resolution. AIHA and ITP tended to persist.	60%

Table 1. Hematological toxicities after checkpoint inhibitors (CPI).

Autoimmune cytopenias after CPIs

Fattizzo et al., Pharmaceuticals, 2022

IRAEs immune-related adverse events, ITP: immune thrombocytopenia, AIHA: autoimmune hemolytic anemia, HLH: hemophagocytic lymphohistiocytosis, G-CSF: granulocyte colony stimulating factor.

Clinical Presentation of Autoimmune Cytopenias

Immune Thrombocytopenia (ITP)

- Common symptoms
 - Often asymptomatic, especially with PLT > $30K/\mu L$
 - Fatigue
 - Petechial rash, purpura
 - Spontaneous bleeding epistaxis, less commonly severe bleeding
 - Rarely thrombosis

Think of ITP when there is <u>isolated, profound</u> <u>thrombocytopenia</u> with normal Hgb/Hct and WBC/diff

Autoimmune Hemolytic Anemia (AIHA)

Common symptoms

- Fatigue
- Dyspnea on exertion
- Palpitations, tachycardia
- Jaundice and/or pallor
- Dark urine

AIHA can co-occur with ITP = Evans Syndrome

Autoimmune Neutropenia

- Common symptoms
 - Often asymptomatic
 - Can present at the time of an infection

Consider immune neutropenia with new, isolated, profound neutropenia

Workup of Immunotherapy-Related Cytopenias

Workup of Cytopenias

Anemia	Thrombocytopenia	Neutropenia			
CBC with diff CMP Nutritional studies: Iron/TIBC, Ferritin, B12, Folate Peripheral smear					
Reticulocyte count LDH, Haptoglobin, Coombs IPF, coags if TCP	Immature platelet fraction PTT/PT/INR, Fibrinogen Hemolysis labs if anemia	Consider other cytopenia tests if concomitant cytopenias			
	HIV Hepatitis B/C				
Consider: ANA, Rheumatoid Factor EBV, CMV, Parvovirus PCRs Bone marrow biopsy if pancytopenia, risk factors marrow involvement/disorder					

Management of Immunotherapy-Related Cytopenias

Upfront Treatment of Immunotherapy-Related Cytopenias

- Steroids
 - ITP Dexamethasone 40mg PO daily x 4 days
 - AIHA Prednisone 1mg/kg PO daily with gradual taper
 - Neutropenia will respond to steroids, typically Prednisone 1mg/kg
- IVIG for ITP 1g/kg daily for 1-2 doses
- GCSF trial for neutropenia

17

Second-Line Treatment of Immunotherapy-Related Cytopenias

- Rituximab 375mg/m2 IV weekly x 4 weeks
 - Use in standard of care treatment for ITP and AIHA to control disease and prevent relapse (Go et al., Blood, 2017)
 - Can also use in autoimmune neutropenia given overlapping general pathophysiology with autoimmune disorders
 - Data supporting Rituximab use with CPIs without losing therapeutic effects (Damsky et al., 2019)
- Thrombopoietin (TPO) Receptor Agonists for ITP
 - Oral Eltrombopag, Avatrombopag
 - Romiplostim SQ TPO peptide mimetic that binds to human TPO receptor

Consider Rechallenge

- If immune-mediated cytopenia in complete response (or good control of chronic ITP), can consider rechallenge with close monitoring.
- Weigh risks/benefits and impact on prognosis with continuing immunotherapy vs changing therapies
 - More important in metastatic disease with limited treatment options
 - More likely discontinue if using in adjuvant setting
- Limited data on recurrence rates of IrAEs with rechallenge

Case 1: Ms. D

- 79yo woman with metastatic NSCLC (glandular squamous/neuroendocrine differentiation) with pleural mets
 - PDL1 50%, negative driver mutations
 - H/o ulcerative colitis s/p colectomy, celiac, DVT/PE on Apixaban
 - Normal CBC at baseline
 - Started Pembrolizumab, completed C1-3 without issue

- Presented to clinic right after scans for clearance prior to C4 Pembro
 - New drop in hemoglobin to 5.9
 - Worsening profound fatigue, exhaustion, chills past 3 weeks
 - Unable able to stand in shower or stir oatmeal 2/2 exhaustion
 - No chest pain, shortness of breath, lightheadedness/dizziness

- Labs on presentation
 - Hgb 5.9, Hct 18.7, MCV 102.2 PLT 163, WBC 4.21, normal diff
 - Tbili 1.5, normal AST/ALT/Alk Phos, Cr 1.4 (baseline)
- Further workup on admission
 - Tsat 65%, Ferritin 847, B12 1400, Folate 18.0, TSH 1.427, FT4 0.8
 - Elevated immature retic fraction 15.9%, retic 3.73%
 - LDH 518 (normal 135-225)
 - Haptoglobin < 8
 - Coombs positive for IgG, negative for C3

New diagnosis of AIHA

- Treatment course
 - Transfused PRBCs
 - Started Prednisone 1mg/kg PO daily
 - Received upfront Rituximab 375mg/m2 IV weekly x 4 weeks after discharge
 - Was able to finally taper off Prednisone completely 12 weeks after diagnosis of AIHA
- Observed for her lung cancer while on Prednisone/Rituximab
 - Restaging scans during final week of Prednisone showed ongoing response with further decrease in disease despite holding Pembrolizumab
 - Patient & thoracic oncologist opted for continued observation as she was asymptomatic
- Mild progression of disease in mediastinal lymphadenopathy and new hypercalcemia on next CTs 3 months later
 - Decided to change to Atezolizumab to see if reduced risk of recurrent AIHA (anecdotal)
 - Remains on Atezolizumab, currently 3 cycles in with no hemolysis

Case 2: Mr. J

- 68yo gentleman with history of muscle invasive bladder cancer
 - Received neoadjuvant ddMVAC followed by radical cystoprostatectomy and BPLND with ypT0N1 disease
 - Started adjuvant Nivolumab with plan for 1 year
 - Received 8 cycles of Nivolumab 480mg q4weeks
- Presented for C9 Nivolumab clearance, asymptomatic

Pre-treatment labs

- WBC 1.96K (from 3.95, baseline 4-8)
- ANC 0.14 (from 2.07, baseline 2-5K)
- Normal Hgb 15.2, MCV 84.4, PLT 210K
- Held treatment and referred to Hematology for further workup
 - Normal retic, IPF, B12, Folate, Copper, CMP
 - Negative HIV, Hepatitis B/C, ANA, Rheumatoid Factor
 - Peripheral smear with neutropenia, otherwise unremarkable
- Developed pyelonephritis with E. coli bacteremia 1 week into being newly neutropenic, admitted and treated

- Bone marrow biopsy obtained since he had prior chemo/anthracycline exposure
 - Mild hypocellularity (20%), no significant dysplasia, no increased blasts
 - Small clonal CD8+ T-LGL population and ~3% unevenly distributed mast cell populations – can be seen in the post-chemo setting
 - Normal cytogenetics, MDS FISH
 - NGS with DNMT3a splice variant c.1851+2T>G at low VAF 3%
- Question of Clonal Cytopenia of Undetermined Significance (CCUS) as diagnosis per pathology but otherwise unremarkable bone marrow
 - <u>CCUS would not explain the acute, profound drop in ANC</u>

• Treatment course

- Started Prednisone 1mg/kg with acute response, unable to tolerate 2/2 severe hyperglycemia
- ANC not responsive to GCSF
- Started Rituximab 375mg/m2 IV weekly x 4 weeks
- ANC responded quickly after 1 dose of Rituximab, 0.22 >> 4.07 after one week
 - Subsequently hospitalized for new immunotherapy-related adrenal insufficiency, unable to receive further doses Rituximab
 - Held Rituximab while being stabilized for adrenal insufficiency, started on Hydrocortisone/Fludrocortisone

- ANC held in 2-4K range for 2 months, then acutely dropped again to ANC 0.12, asymptomatic
- Completed Rituximab 375mg/m2 IV weekly x 4 weeks
- ANC again quickly normalized, remains within normal range ~3 months out thus far, remains on observation

Case 3: Mr. L

Mr. L

- Prior open right radical nephrectomy 2 years prior, now with recurrent/metastatic disease to lungs
- History of chronic ITP diagnosed 10 years prior, observed only, never required treatment
- Baseline PLT 90K-120K over the years
- Started Pembrolizumab/Axitinib for first-line therapy

Mr. L

- Completed 4 cycles of Pembrolizumab/Axitinib
 - Presented for C5 Pembrolizumab/Axitinib, asymptomatic
 - Pre-treatment labs:
 - PLT 40K (from 160-170K past few months)
 - Normal Hgb 14.4, MCV 86.1, WBC 4.95, normal diff
 - Referred to Heme
- Lab Workup
 - Normal CMP, B12, Folate, coags
 - Negative HIV, Hepatitis B/C

Mr. L

• Since ITP asymptomatic with PLT > 30K, continued observation

- Weighed risks/benefits of continuing Pembrolizumab and consideration of Rituximab/TPO receptor agonists
- Pembrolizumab rescheduled, platelets increased to 92K with pre-treatment labs
 - Unfortunately had new G3 immunotherapy-related colitis and inflammatory arthritis on clinical assessment
 - Started Prednisone for colitis/inflammatory arthritis
 - Pembrolizumab discontinued
- Continues on Cabozantinib monotherapy currently
- Chronic ITP remains on observation with PLT at baseline 90-120K

References

Brahmer, J.R., Lacchetti, C., Schneider, B., et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inihibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. Journal of Clinical Oncology. 2018;36(17):1714-1767. doi: 10.1200/JC0.2017.77.6385

Damsky, W., Jilaveanu, L., Turner, N., et al. B cell depletion or absence does not impede anti-tumor activity of PD-1 inhibitors. Journal for ImmunoTherapy of Cancer. 2019 Jun 14;7(1):153. doi: 10.1186/s40425-019-0613-1

Delanoy, N., Michot, J.M., Comont, T., et al. Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L1 immunotherapy: a descriptive observational study. Lancet Haematol. 2019:6:348-57. doi:10.1016/S2352-3026(18)30175-3.

Fattizzo, B., Rampi, N., & Barcellini, W. Hematological and Extra-Hematological Autoimmune Complications after Checkpoint Inhibitors. Pharmaceuticals (Basel). 2022 Apr 30;15(5):557. doi:10.3390/ph15050557

Go, R.S., Winters, J.L., Key, N.E. How I treat autoimmune hemolytic anemia. Blood. 2017;129(22):2971-2979. doi:10.1182/blood-2016-11-693689

Kroll, M.H., Rojas-Hernandez, C., & Yee, C. Hematologic complications of immune checkpoint inhibitors. Blood. 2022 Jun 23;139(25):3594-3604. doi:10.1182/blood.2020009016

Neunert, C., Terrell, D.R., Arnold, D.M., et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019;3(23):3829-3866. doi:10.1182/bloodadvances.2019000966

Questions or Patient Experiences?

