Disparities in Cancer Care and Health Equity Summit Explaining Lung Cancer Disparities

Taofeek K. Owonikoko, MD, PhD Professor and Chief Division of Hematology/Oncology Department of Medicine UPMC Hillman Cancer Center Pittsburgh, PA

Taofeek K. Owonikoko, MD, PhD

Disclosure Information

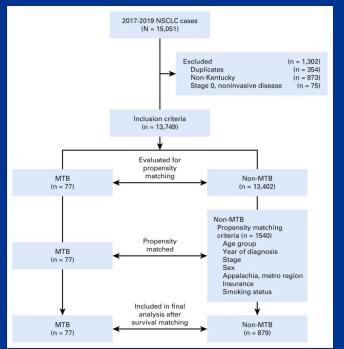
- **Paid Advisory Board:** Novartis, Celgene, Lilly, Sandoz, AbbVie, Eisai, G1 Therapeutics, Takeda, Seattle Genetics, Bristol-Myers Squibb, MedImmune, BerGenBio, Lilly, Amgen, AstraZeneca, PharmaMar, Boehringer Ingelheim, EMD Serono, XCovery, Bayer, Heron Pharmaœutical, ARMO BioSciences, Merck, Bayer, Jazz
- **Research Funding to Institution:** Novartis; Astellas Pharma, Bayer, StemCentRx, Regeneron, AstraZeneca/MedImmune, Abbvie, G1 Therapeutics, Bristol-Myers, Corvus Pharmaceuticals, United Therapeutics, Amgen, Loxo/Lilly, Fujifilm, Pfizer, Aeglea Biotherapeutics, Incyte, Merck, Mersana, Turning Point, Oncorus
- IRC/DSMB: EMD Serono, Roche/Genentech
- Co-founder/Stock Ownership: Cambium Oncology; TaoBob LLC

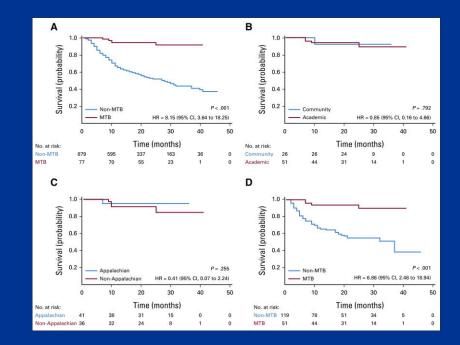
Objectives

- Highlight key determinants of disparate outcomes in lung cancer
- Salient examples of opportunity areas driving disparity
- Strategies to address disparity

NIH Definition of Disparity

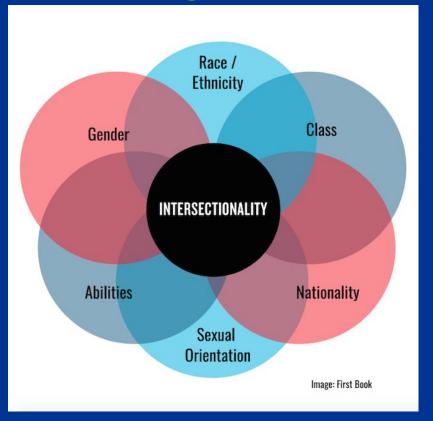
 Differences in the incidence, prevalence, mortality, and burden of diseases and other adverse health conditions that exist among specific population groups in the United States.



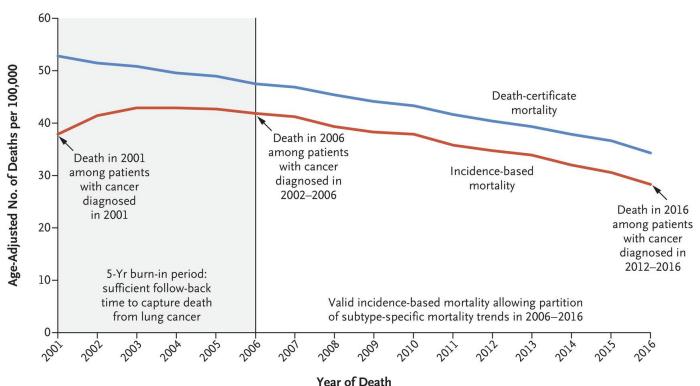

Estbalished drivers of disparities in lung cancer outcome

- Age
- Ethnicity/race
- Gender/Sexual orientation
- Rural/urban residence
- SES

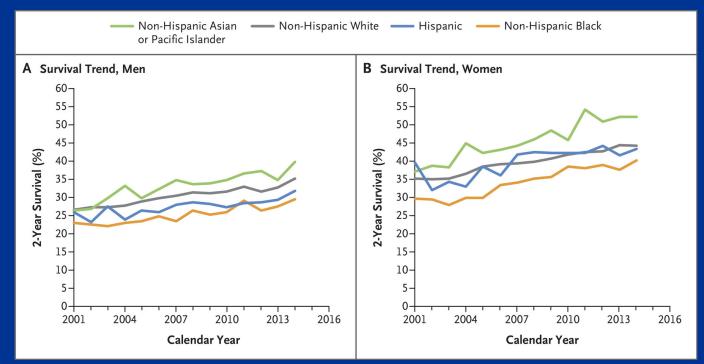
Disparity by location of treatment in the Appalachian



Bin Zhang et al. JCO Precis Oncol. 2021; 5: PO.21.00210.

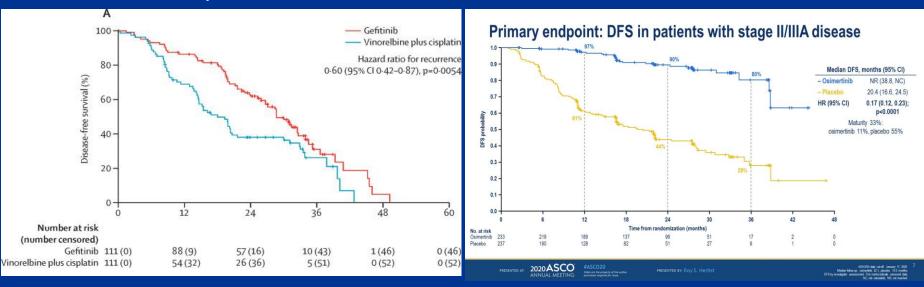

Intersectionality

University of Pittsburgh


https://www.weforum.org/agenda/2021/10/here-s-how-organizations-put-intersectionality-to-work/

Why address sources of disparities

Improved survival for US cancer patients driven mainly by reduced lung cancer mortality



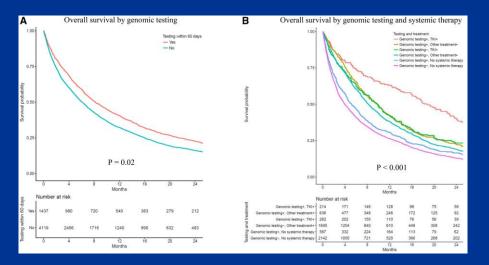
Genomics in early-stage disease: Adjuvant EGFR targeted therapies

CTONG 1104 Adjuvant Gefitinib

ADURA Adjuvant Osimertinib

Wen-Zhao Zhong et al. Lancet Oncol. 2018 Jan;19(1):139-148.

Herbst R et al. ASCO 2020 LBA5


Disparity in genomic testing

- Younger patients < 75 years of age more likely to receive genomic testing (OR, 1.55)
- Race was associated with genomic testing (OR, 0.58, Black vs. White; OR, 2.45, Asian vs. White),
- Female gender had a higher likelihood of getting tested (OR, 1.45);
- Treatment with reference therapy (erlotinib) less likely among low-income patients (OR, 0.32)

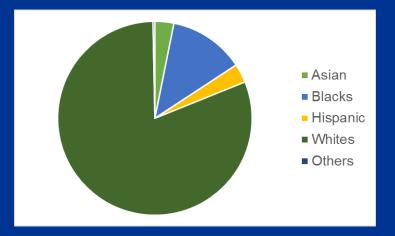
Lauren L Palazzo et al. Cancer Epidemiol Biomarkers Prev. 2019 May;28(5):926-934; Julie A Lynch BMC Cancer 2018 Mar 20;18(1):306.

Genomic testing and targeted therapy within 60 days of lung cancer diagnosis associate with survival

- 5556 patients and 1437 (25.9%) had molecular testing
- Testing rates:
 - 14.1% (Blacks)
 - 26.2% (White)
 - 32.8% (Asian) (adjusted *P* < .001);
- Medicaid
 - 20.6% for Medicaid patients
 - 28.4% for non-Medicaid
- 19.9% in the highest poverty rate quintile vs 30.7% in the lowest quintile

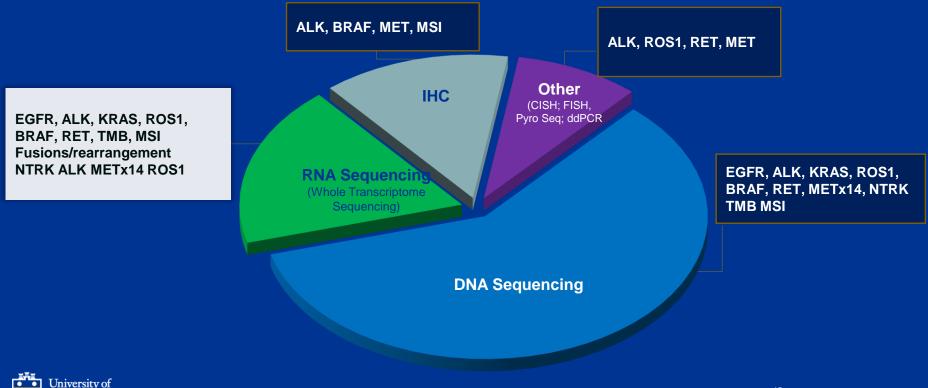
Genomic mutational differences in lung cancer by ethnicity/race

Bollig-Fischer A et al. J Thorac Oncol. 2015 Feb;10(2):250-5.



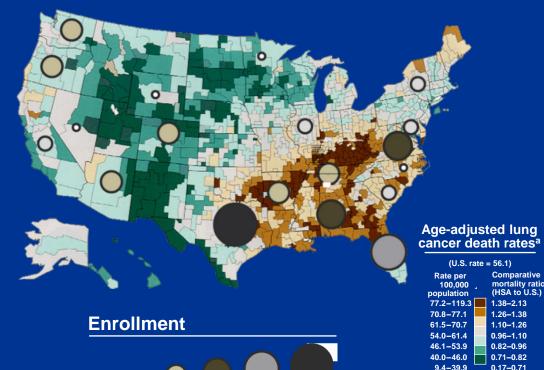
Steuer C et al. J Thorac Oncol. 2015 May; 10(5): 768–777.

Prevalence of actionable mutations by race and ethnicity in TCGA


- 5729 samples
- Somatic mutational frequency:
 - 0.7 (prostate cancer)
 - 9.9 (lung squamous cell cancer)
- All tumor types from white patients contained enough samples to detect a 10% mutational frequency.
- Only Blacks with breast cancer
- Group-specific mutations frequency of 5% not detectable in racial minorities

Spratt DE et al. JAMA Oncol. 2016 Aug 1;2(8):1070-4

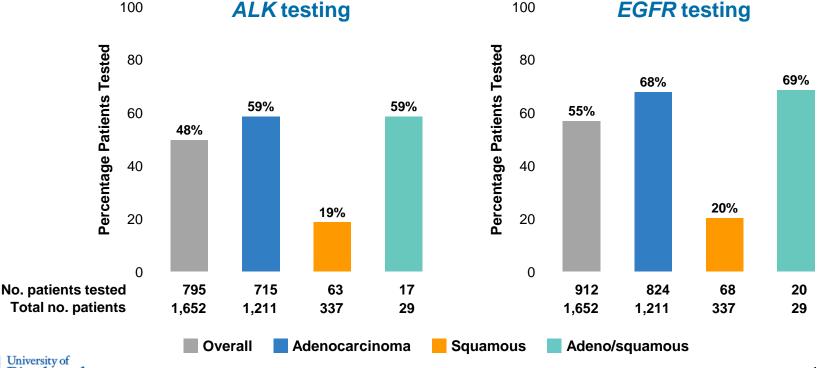
Technology platform for genomic testing for approved targeted therapies


Pittsburgh

CA209-118: A US Community Study

- The majority of metastatic NSCLC in the US is treated in the community
- CA209-118 is a prospective observational study examining 13 current lung cancer clinical networks/practices (70 investigators) in the community oncology setting
- This sub-study investigates biopsy and biomarker testing practices in stage IV NSCLC patients
- With the first patient recruited in April 2014, this analysis reflects current biopsy practices

^aIn white males Source: CDC/NCHS


51-100 101-250 251-500

26-50

>500

Hatching indicates sparse data

Adoption of Mutation/Biomarker Testing for NSCLC in the Community

Pittsburgh Other genes widely tested in this population included KRAS (13%, 216/1,652), ROS1 (10%, n=161/1,652), and BRAF (5%, n=80/1,652)

Clinical Factors Affecting ALKIEGFR Testing in Lung Adenocarcinoma

		ALK tested		EGFR tested	
	C	% (tested/total)	Р	% (tested/total)	Р
Overall		59 (715/1,211)		68 (824/1,211)	
Sex	Female Male Missing	57 (353/620) 61 (358/584) 57 (4/7)	0.30	70 (431/620) 66 (388/584) 71 (5/7)	0.51
Age at initial diagnosis	<75 years ≥75 years	60 (606/1,009) 54 (109/202)	0.15	68 (685/1,009) 69 (139/202)	0.58
Smoking status at initial diagnosis	Current Former Never Missing	60 (266/441) 58 (310/538) 60 (136/225) 43 (3/7)	0.64	64 (282/441) 67 (363/538) 77 (174/225) 71 (5/7)	0.006 ^a
Race/ethnicity	Caucasian African-American Asian Other/mixed Declined/missing	60 (638/1,057) 48 (50/105) 59 (10/17) 63 (10/16) 44 (7/16)	0.09	69 (729/1,057) 59 (62/105) 88 (15/17) 50 (8/16) 63 (10/16)	0.04 ^a
Stage at diagnosis	 V	51 (38/74) 46 (28/61) 55 (71/130) 61 (578/946)	0.03ª	65 (48/74) 72 (44/61) 62 (81/130) 69 (651/946)	0.38

• In adenocarcinoma, the frequency of ALK testing was influenced by stage at diagnosis

• Ethnicity and smoking status, two characteristics known to affect the prevalence of *EGFR* mutation, influenced the likelihood of performing *EGFR* testing

^aStatistically significant

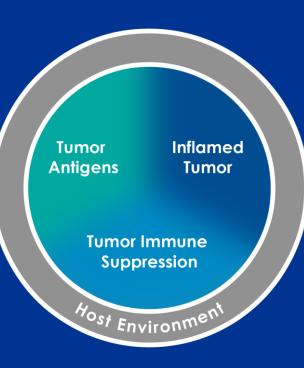
Immunotherapy

Host and Tumor Biomarkers to Predict Better Outcomes with I-O Therapy

Tumor Antigens

Biomarkers indicative of hypermutation and neoantigens may predict response to I-O treatment

Examples:


TMB, MSI-high, neoantigens

Tumor Immune Suppression

Biomarkers that identify tumor immune system evasion beyond PD-1/CTLA-4 to inform new I-O targets and rational combinations

Examples:

Tregs, MDSCs, IDO, LAG-3

Inflamed Tumor Microenvironment

Biomarkers (intra- or peri-tumoral) indicative of an inflamed phenotype may predict response to I-O treatment

Examples:

• PD-L1, inflammatory signatures (IFN-gamma)

Host Environment

Biomarkers which characterize the host environment, beyond tumor microenvironment, may predict response to I-O treatment

Examples:

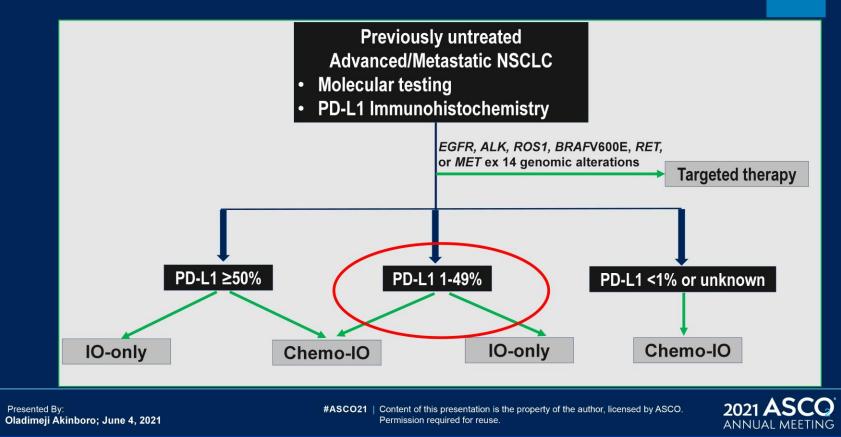
• *Microbiome, germline genetics*

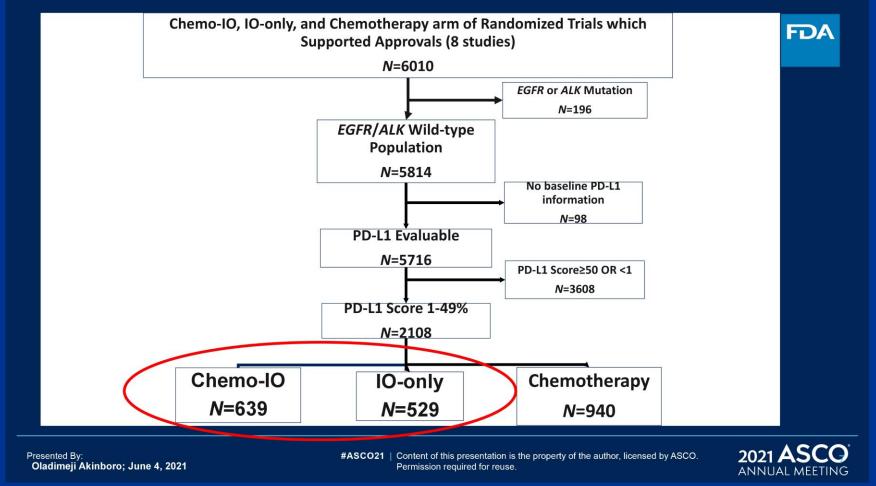
University of Pittsburgh CTLA4=cytotoxic T-lymphocyte antigen 4; I-O=immuno-oncology; IDO=indoleamine-2,3 dioxygenase; IFN=interferon; LAG-3=lymphocyte activation gene-3; MDSCs=myeloid-derived suppressor cells; MSI-High=microsatellite instability high; PD-1=programmed death receptor-1; PD-1=programmed death ligand 1; TMB=tumor mutational burden; Treg=regulatory T cell. Blank CU et al. Science. 2016;352:658-660.

2021 ASCO

OUTCOMES OF ANTI-PD-(L)1 THERAPY IN COMBINATION WITH CHEMOTHERAPY VS. IMMUNOTHERAPY (IO) ALONE FOR FIRST-LINE (1L) TREATMENT OF ADVANCED NON-SMALL CELL LUNG CANCER (NSCLC) WITH PD-L1 SCORE 1-49%: FDA POOLED ANALYSIS

Oladimeji Akinboro¹, Jonathon Vallejo¹, Pallavi Mishra-Kalyani¹, Erin Larkins¹, Nicole Drezner¹, Shenghui Tang¹, Richard Pazdur^{1,2}, Julia A. Beaver^{1,2}, Harpreet Singh^{1,2}


¹Center for Drug Evaluation and Research, U.S. Food and Drug Administration. ²Oncology Center of Excellence, U.S. Food and Drug Administration.


Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Background

FDA

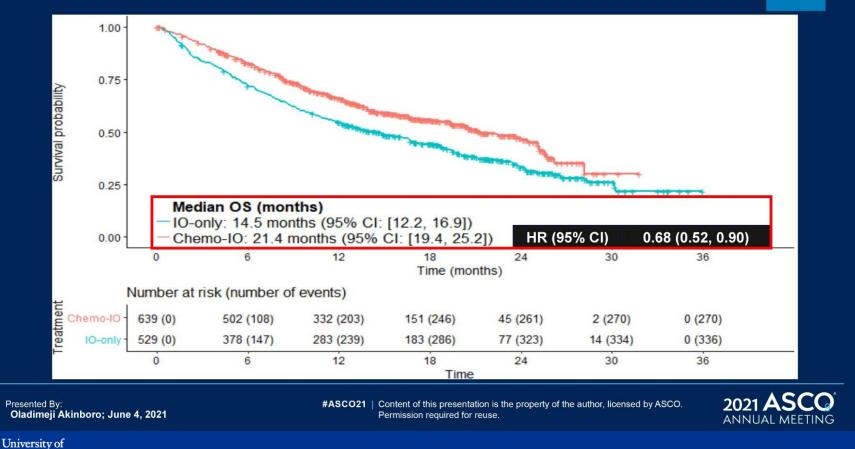
University of Pittsburgh

University of Pittsburgh

Demographic and baseline characteristics

	Chemo-IO (<i>N</i> =639) %	IO alone (<i>N</i> =529) %	Chemo (<i>N</i> =940) <i>%</i>	Overall (<i>N</i> =2108) %
Age <65 years	48	53	53	51
65–74 years	40	36	36	37
≥75 years	11	11	12	12
Female	35	31	32	33
White	88	69	78	79
Asian	9	23	19	17
Black/African-American	2	2	2	2
Current/Prior Smokers	→ 91	81	84	85
ECOG-PS ≥1	62	67	67	65
Non-squamous	→ 77	63	64	68
Stage IV	89	91	92	91

Presented By: Oladimeji Akinboro; June 4, 2021 **#ASCO21** | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.


FDA

Exploratory OS: NSCLC PDL1 1-49%

• •

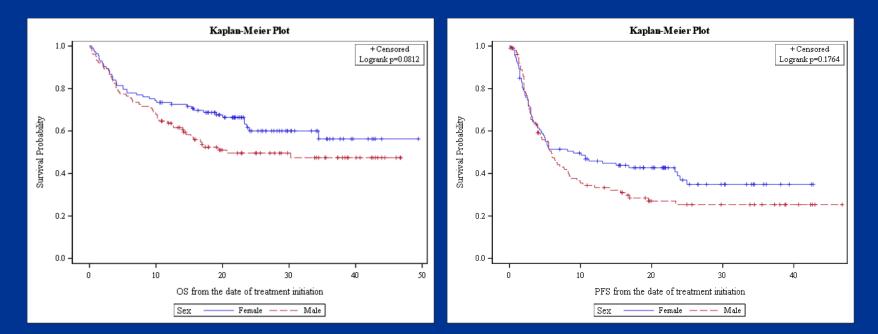
Pittsburgh

FDA

OS in PDL1 1-49%: Subgroup analyses

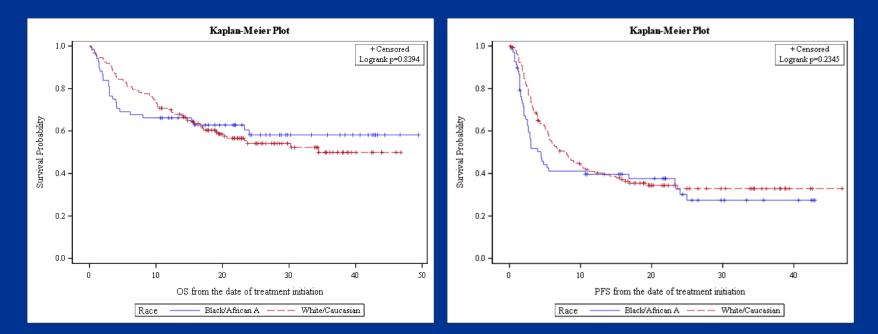
Hazard Ratio								
Subgroup	Ν		Median OS (95% Cl) IO-only	Median OS (95% CI) Chemo-IO				
Overall Age	1168	┠╼┦	14.5 (12.2, 16.9)	21.4 (19.4, 25.2)				
<65 years 65-74 years >=75 years	580 443 132		16.1 (11.1, 19.6) 14.8 (12.3, 18.2) 10.3 (8.0, 15.7)	23.7 (18.1, 25.6) 22.5 (20.5, NE) 13.9 (10.2, NE)				
ECOG 0 1+	415 751		20.0 (18.2, 23.9) 11.0 (9.1, 13.9)	25.2 (23.7, NE) 16.8 (13.8, 22.3)				
Smoking Status Current/former smokers Never smokers	1005 160		13.5 (11.7, 16.6) 18.0 (10.8, 23.8)	20.8 (17.4, 25.1) 28.2 (20.3, NE)				
0.25 0.50 1.0 2.0 <chemo-io better="" betterio-only=""></chemo-io>								

Presented By: Oladimeji Akinboro; June 4, 2021

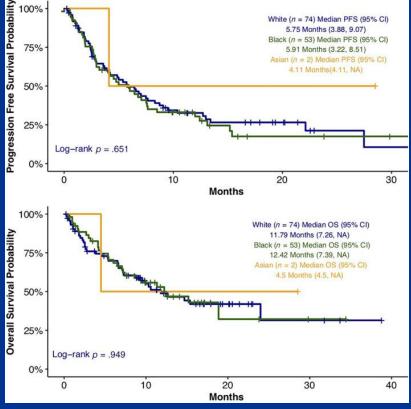

University of Pittsburgh

• •

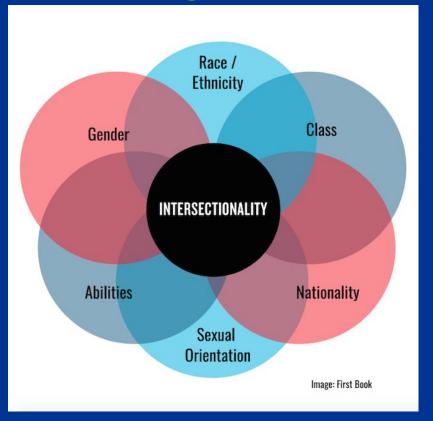
#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.


Efficacy of ICB by gender – Emory Winship Experience

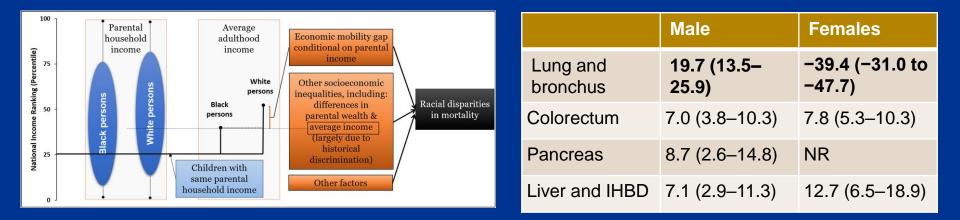
B Nazha et al. ASCO 2020


Efficacy of ICB in Blacks compared to Caucasian – Winship Experience

B Nazha et al. ASCO 2020


Independent validation of comparative ICB efficacy by race in the community setting

Peravali et al. Oncologist. 2021 Aug; 26(8): 694-700.


Intersectionality

University of Pittsburgh

https://www.weforum.org/agenda/2021/10/here-s-how-organizations-put-intersectionality-to-work/

Racial economic mobility gap and disparities in mortality

Islami F et al. Cancer Epidemiology Volume 74, October 2021, 101998

Conclusions

- Gender, race, rurality and access to care are known drivers of disparities in lung cancer
- Proper recognition of diversity in cancer-associated genetic alterations is critical to the overall success of personalized cancer care
- Low enrolment of US ethnic minorities in local and national tissue acquisition protocols limits ability to detect unique alterations in this population
- Ethnicity, age and other demographic enrichment strategies should be incorporated into tissue science
- Demographic or histologic factor should not play a determinant role in testing decision

