Update in Targeted Therapy for Non-Small Cell Lung Cancer

Evan W. Alley, MD, PhD Section Head, Thoracic Oncology Department of Hematology/Oncology

Lung Cancer: Overview

- Second most common cancer in men and women 235,760 new cases est.
- Leading cause of cancer deaths 131,880 est.
 - Accounts for more deaths than breast, colon and prostate cancer combined
- Research is underfunded, but improving
- Unfavorable stage distribution at diagnosis usually advanced
 - Screening may allow earlier diagnosis when potentially curable
- Types of lung cancer:
 - Non-small cell lung cancer (NSCLC): 87%
 - Small cell lung cancer (SCLC): 13%

Lung Cancer: Facts

- Lung cancer is a largely preventable illness
 - Eliminating smoking could prevent ~150,000 cases yearly in the U.S.
- An increasing percentage of those diagnosed with lung cancer are never-smokers (15-20%)
- Lung cancer in non-smokers often has different biology and clinical behavior

Evolution of NSCLC Classification

EGFR-Mutated NSCLC:

- Most common driver mutation in never/light-smokers with NSCLC
 - Common actionable mutations: Exon 19 del, L858R (exon 21)
 - Less common actionable mutations: G719X, S768I, L861Q
 - Exon 20 insertions: Previously resistant, now actionable
- Tyrosine kinase inhibitors commercially available:
 - First-generation: Gefitinib, erlotinib
 - Second-generation: Afatinib, dacomitinib
 - Third-generation: Osimertinib first-line for advanced disease (FLAURA trial 2018)

Adjuvant Therapy for mEGFR+ NSCLC:

- ADAURA Trial RP3 trial of osimertinib in <u>resected</u> stage IB IIIA
 - Must have Ex19del or L858R
 - Osimertinib x 3 years after standard adjuvant treatment (chemo+/-XRT)

Hazard Ratios for DFS:Stage IB0.39Stage II0.17Stage IIIA0.12

Osimertinib is FDA-approved for adjuvant treatment of stage IB-IIIA NSCLC with EGFR ex19del or L858R after resection.

Y Wu et al. N Engl J Med 2020;383:1711-1723.

- Activating mutations that are usually resistant to TKIs
- Represent 4-10% of EGFR muts
- Conformation of kinase domain variably resistant to EGFR TKIs
- Development of new compounds to target EGFR ex20ins mutations
 - Amivantimab
 - Mobocertinib

- Amivantamab:
- EGFR/c-MET bispecific antibody

https://doi.org/10.17925/OHR.2021.17.1.42

- CHRYSALIS Trial of Amivantamab:
- Phase I dose-escalation/dose-expansion study
- Previously-treated NSCLC (post-platinum)

Response per RECIST	Efficacy Population ($n = 81$)				
ORR, % (95% CI) ^a	40 (29 to 51)				
CBR, % (95% CI)⁵	74 (63 to 83)				
Best response, No. (%)					
CR	3 (4)				
PR	29 (36)				
SD	39 (48)				
PD	8 (10)				
NE	2 (2)				

mDOR: 11.1 months mPFS: 8.3 months mOS: 22.8 months

Amivantamab granted accelerated approval in May 2021 for previously-treated EGFR ex20ins+ NSCLC after platinum-based chemotherapy.

- Mobocertinib (TAK-788):
- Covalent, irreversible inhibitor designed to selectively target the ex20ins mutant forms of both EGFR and HER2 kinases over wild-type EGFR
- Broadly active across different EGFR
 ex20ins mutations

Zhang et al. Lung Cancer (Auckl). 2021;12:61-65.

- EXCLAIM Trial of Mobocertinib:
- Phase I/II open-label, non-randomized
- Previously-treated NSCLC (post-platinum)

	No. (%)		
Outcome	EXCLAIM cohort (n = 96)		
IRC-assessed confirmed objective response ^b			
Patients, No. (%) [95% CI]	24 (25) [17-35]		
Complete response	0		
Partial response	24 (25)		
Stable disease ^c	49 (51)		
Not evaluable	10 (10)		
Confirmed disease control rate. No. (%) [95% CI] ^d	73 (76) [66-84]		

mDOR: 17.5 months mPFS: 7.3 months mOS: 24.0 months

Other EGFRex20ins variant

Unconfirmed EGFRex20ins

Mobocertinib granted accelerated approval in September 2021 for previously-treated EGFR ex20ins+ NSCLC after platinum-based chemotherapy.

Amivantamab vs. Mobocertinib:

- No head-to-head data
- Similar PFS and OS
- Higher ORR with amivantamab
- Longer DOR with mobocertinib
- Fewer grade 3-4 toxicities with amivantamab
- Neither has significant CNS activity
- Oral administration of mobocertinib
- Ongoing studies in first-line therapy for ex20ins+ NSCLC:
 - Chemotherapy +/- amivantamab (PAPILLON)
 - Chemotherapy vs. mobocertinib (EXCLAIM-2)

MET exon 14 skipping mutation:

- Represents 3-4% of NSCLC
- More common in adenosquamous and pulmonary sarcomatoid carcinoma
- More likely in older, female, and never-smokers
- MET exon 14 contains a key regulatory region for receptor signaling
- Loss of exon 14 in MET gene leads to overactive protein and cell proliferation

METex14 targeted therapy:

Drug		ORR (%)	mDOR (mos.)	mPFS (mos.)	Grade 3-4 Toxicities (%)	Ref.
Conmotinih	Treatment-Naive	68	12.6	12.4	67	Wolf et al.
Capmatinib	Previously-Treated	41	9.7	5.4		
Tapatinih	Treatment-Naive	44	10.8	8.5 2	07	Doils at al
repotinio	Previously-Treated	48	11.1		21	Paik et al.

- Capmatinib and tepotinib are both FDA-approved for NSCLC with METex14
- NCCN recommends first-line therapy with either agent
- Similar response rates and progression-free survival
- Both agents have evidence of CNS activity
- Toxicity profile may favor tepotinib, but discontinuation rates were similar (~10%)

Wolf J, et al. N Engl J Med. 2020;383(10):944-957. Paik PK, et al. N Engl J Med. 2020;383(10):931-943.

RET fusion mutations:

- *RET* gene fusions give rise to chimeric, cytosolic proteins with constitutively active RET kinase domain
- Found in 1-2% of NSCLC (non-squamous)
- More common in young, never-smokers

Most Common RET Translocation in Lung Adenocarcinoma: KIF5B-RET

Activation of downstream pathways:

- MAPK, PI3K, JAK-STAT, PKA, PKC
- Cell proliferation signals

Drilon AE, et al. J Clin Oncol. 2018;36:(suppl; abs 102). Gubens et al, http:/clinicaloptions.com

RET fusion targeted therapy:

Drug		ORR (%)	mDOR (mos.)	mPFS (mos.)	Grade 3-4 Toxicities (%)	Ref.
Salparaatinih	Treatment-Naive	85	NR	NR	28	Drilon et al.
Selpercalinib	Previously-Treated	64	17.5	16.5		
Drolaatinih	Treatment-Naive	70	9.0	9.1	48	Gainor et al.
Praiselinid	Previously-Treated	61	NR	17.1		

- Selpercatinib and pralsetinib are both FDA-approved for NSCLC with RET fusion
- NCCN recommends first-line therapy with either agent
- Similar response rates and toxicity profile
- Both agents cross blood-brain barrier and have evidence of CNS activity

Drilon A, et al. *N Engl J Med*. 2020;383(9):813-824. Gainor, et al. *Lancet Oncol*. 2021;22(7):959-969.

KRAS G12C:

- KRAS mutations are the most common mutations in NSCLC
 - Found in ~25% non-squamous NSCLC
 - Rare in squamous cell carcinoma
 - KRAS G12C ~13%
- Initial attempts at targeting KRAS directly were disappointing
 - Long thought to be "undruggable"
 - High affinity for GTP
 - Inaccessible binding sites
- Sotorasib is an irreversible KRAS inhibitor
 - Binds to inactive conformation of KRAS G12C
 - Prevents cycling to active form
 - Blocks downstream signaling

KRAS G12C targeted therapy with sotorasib:

- CodeBreaK100 Trial Phase 1/2 dose-escalation and expansion study
 - Advanced solid tumors with KRAS G12C
 - Most common adverse events: diarrhea and nausea
 - Recommended phase 2 dose: 960 mg daily

Phase I results for NSCLC:

- ORR 32.2%
- DCR 88.1%
- mPFS 6.3 months
- Evidence of CNS activity

Sotorasib in Advanced KRAS G12C+ NSCLC:

CodeBreaK100 Trial – Phase 2 NSCLC cohort (previously-treated):

- Treatment-related grade 3-4 toxicity was 20.6%
 - Diarrhea, nausea, LFT abnormalities most common AE, rare ILD/pneumonitis
- FDA-approved for previously-treated NSCLC with KRAS G12C mutation.

Skoulidis F, et al. N Engl J Med. 2021;384(25):2371-2381.

Conclusions:

- NSCLC is not one disease, but many diseases defined by molecular subtypes
- Targeted therapy improves outcomes and is often the first-line of therapy for patients with actionable mutation
- Molecular profiling is key to identifying actionable mutations in patients with advanced disease and in adjuvant setting
- Molecular profiling should be performed at the time of diagnosis to help guide therapy
 - Tissue testing should be performed whenever feasible
 - Plasma-based testing may complement tissue testing and should also be considered at the time of diagnosis of advanced disease