# An Update for Acute Myeloid Leukemia in 2021

David A. Sallman, MD Department of Malignant Hematology Myeloid Section Lead Moffitt Cancer Center <u>david.sallman@moffitt.org</u>



#### 7+3 is No Longer Standard

Maybe?

| Risk category* | Genetic abnormality                                                        |  |  |  |
|----------------|----------------------------------------------------------------------------|--|--|--|
| Favorable      | t(8;21)(q22;q22.1); RUNX1-RUNX1T1                                          |  |  |  |
|                | inv(16)(p13.1q22) or t(16;16)(p13.1;q22), CBFB-MYH11                       |  |  |  |
|                | Mutated NEWT without FLT3-ITD or with FLT3-ITD low +                       |  |  |  |
|                | Biallelic mutated CEBPA                                                    |  |  |  |
| Intermediate   | Mutated NPM1 and FLT3-ITD <sup>high</sup> †                                |  |  |  |
|                | Wild-type NPM1 without FLT3-ITD or with FL13-ITD <sup>low</sup> † (without |  |  |  |
|                | adverse-risk genetic lesions)                                              |  |  |  |
|                | t(9;11)(p21.3;q23.3); MLLT3-KMT2A‡                                         |  |  |  |
|                | Cytogenetic abnormalities not classified as favorable or adverse           |  |  |  |
| Adverse        | t(6;9)(p23;q34.1); DEK-NUP214                                              |  |  |  |
|                | t(v;11q23.3); <i>KMT2A</i> rearranged                                      |  |  |  |
|                | t(9;22)(q34.1;q11.2); BCR-ABL1                                             |  |  |  |
|                | inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM(EVI1)              |  |  |  |
|                | -5 or del(5q), -7; -17/abn(17p)                                            |  |  |  |
|                | Complex karyotype,§ menosomal karyotypell                                  |  |  |  |
|                | Wild-type NPM1 and FLT3-ITD <sup>high</sup> t                              |  |  |  |
|                | Mutated RUNX1                                                              |  |  |  |
|                | Mutated ASXL1¶                                                             |  |  |  |
|                | Mutated TP53#                                                              |  |  |  |

#### Table 5. 2017 ELN risk stratification by genetics



#### Long Term Outcomes of CPX-351 vs 7+3

Older adults with newly diagnosed high-risk/secondary AML who achieved remission with CPX-351 versus 7+3: *post hoc* analyses of outcomes from a phase 3 study



Conclusion: Survival was longer for patients who achieved remission (CR or CRi) with CPX-351 versus conventional 7+3 chemotherapy 7+3 CR+CRi ≠ CPX-351 CR+CRi



#### **BCL-2 Inhibitor: Venetoclax**



- BCL-2 stabilizes mitochondria, preventing activation of proapoptotic proteins<sup>1</sup>
- Inhibition of BCL-2 enables apoptosis
- BCL-2 expression is elevated in high-risk MDS and AML (~80%) and balance tips for pro-survival in AML

Sharma P, Pollyea DA. Curr Hematol Malig Rep. 2018;13:256-264. 2. Janssens A. Belg J Hematol. 2017;8:265-271.

## Venetoclax + Azacitidine Versus 7+3: Factors that Predict Survival



Favors Venetoclax + Azacitidine Favors Intensive Chemotherapy

Cherry et al., Blood Advances; Courtesy of Pollyea D

## Intensive Chemotherapy + Venetoclax

|                        | Venetoclax and<br>Cladribine+Idarubicin+<br>Cytarabine | Venetoclax and<br>Fludarabine+Cytarabine+<br>Idarubicin |
|------------------------|--------------------------------------------------------|---------------------------------------------------------|
| Ν                      | 41                                                     | 29                                                      |
| Overall Response Rate  | 95%                                                    | 97%                                                     |
| Complete Response Rate | 85%                                                    | 69%                                                     |



Kadia et al., Lancet Hematology 2021; Dinardo et al., JCO 2021

#### Phase 3 azacitidine + venetoclax





## VIALE-A Study of Venetoclax + Azacitidine vs Azacitidine by Subset





#### **Toxicity Concerns of HMA + Ven**

- Nearly all pts with G4 cytopenias
- Mitigation Strategies
  - D21 Bm
  - Holding therapy post BM blast clearance
  - ? GCSF Support
  - Schedule decrease with venetoclax (and consideration of HMA dose reduction)



#### **Potential Predictors of Poor Response**

| Baseline Variables        | Univariate OR      | P-value | Multivariate OR    | P-value |
|---------------------------|--------------------|---------|--------------------|---------|
| Age                       | 0.98 (0.95-1.02)   | 0.40    |                    |         |
| Antecedent Hematologic Dz | 0.57 (0.12-2.77)   | 0.48    |                    |         |
| Complex Cytogenetics      | 2.67 (0.86-8.24)   | 0.09    |                    |         |
| ELN Risk Group            | 4.08 (0.50-33.64)  | 0.07    |                    |         |
| RAS Pathway               | 6.42 (1.81-22.71)  | 0.004   | 2.27 (0.20-25.52)  | 0.51    |
| TP53                      | 1.48 (0.28-7.77)   | 0.64    |                    |         |
| NPM1                      | 0.162 (0.02-1.30)  | 0.09    | 0.49 (0.034-7.0)   | 0.60    |
| FLT3                      | 0.66 (0.14-3.27)   | 0.61    |                    |         |
| FAB M0/M1                 | 0.13 (0.04-0.43)   | 0.0008  |                    |         |
| FAB M5                    | 18.30 (4.70-71.13) | <0.0001 | 33.48 (2.66-421.9) | 0.0066  |

#### FAB M5 62% Refractory



Pei et al, Cancer Discovery 2020

## FAB M5 Venetoclax Resistance May Be Driven By MCL-1 Dependence







#### How to Enhance venetoclax activity?





## Outcomes of *TP53*-mutant AML with DEC10-VEN Results: DEC10-VEN vs DEC10 in *TP53*<sup>mut</sup> AML





#### **APR-246 Mechanism of Action**





Maslah N et al., *Haematologica* 2019; Zhang Q et al., *Cell Death Dis* 2018; Lambert JM et al., *Cancer Cell* 2009; Lehmann S et al., *J Clin Oncol* 2012; Sallman D et al., *Haematologica* 2020

#### Therapeutic Impact of CD47/SIRPα Blockade in Cancer

- CD47 is a "do not eat me" signal on cancers that enables macrophage immune evasion
- CD47 is the dominant macrophage checkpoint overexpressed on most cancers
- In AML, CD47 expression is overexpressed on LSC/bulk AML vs normal HSC/MPP
- CD47 leads to a strong fitness advantage in AML LSCs
- Increased CD47 expression predicts worse prognosis in AML patients





#### **Targeting TIM3 and Sabatolimab**

- TIM-3 promotes autocrine
  LSC self-renewal
- Blocking TIM-3 inhibits downstream signaling that promotes self-renewal
- TIM-3 ligation on T-Cells leads to apoptosis of the effector cell
- May also promote phagocytosis by myeloid cells, macrophages





#### **Response and Outcomes to Eprenetapopt and Azacitidine**



MDS ITT ORR was 73% and 50% CR; P2 GFM ORR 62% and 47% CR

#### Ongoing Triplet with Venetoclax in AML is Ongoing

Sallman D et al., JCO 2021; Cluzeau T et al., JCO 2021

#### Magrolimab + AZA Induces High Response Rates in AML



Patient\*

- Magrolimab + AZA induces a 63% ORR and 42% CR rate in AML, including similar responses in TP53-mutant patients
- Median time to response is 1.95 months (range 0.95 to 5.6 mo), more rapid than AZA monotherapy
- 9.6% of patients proceeded to bone marrow stem cell transplantation
- Magrolimab + AZA efficacy compares favorably to AZA monotherapy (CR rate 18%–20%)<sup>1,2</sup>

Response assessments per 2017 AML ELN criteria. Patients with at least 1 post-treatment response assessment are shown. \*Three patients not shown due to missing values; <5% blasts imputed as 2.5%. 1. Fenaux P, et al. *J Clin Oncol*. 2010;28(4):562-569. 2. Dombret H, et al. *Blood*. 2015;126(3):291-299.

#### Preliminary Median Overall Survival Is Encouraging in Both TP53 Wild-Type and Mutant Patients



- The median OS is 18.9 months in *TP53* wild-type patients and 12.9 months in *TP53*-mutant patients
- This initial median OS data may compare favorably to venetoclax + hypomethylating agent combinations (14.7-17.5 mo in all-comers,<sup>1,3</sup> 5.2–7.2 mo in patients who are *TP53* mutant<sup>2,3</sup>)
- Additional patients and longer follow-up are needed to further characterize the survival benefit NE, not evaluable.

1. DiNardo CD, et al. N Eng J Med. 2020;383(7):617-629. 2. Kim K, et al. Poster presented at: 62nd ASH Annual Meeting; December 5-8, 2020 (virtual). 3. DiNardo CD, et al. Blood. 2019;133(1):7-17.

#### ALX148 + Venetoclax and Azacitidine



- AZA, VEN and ALX148 therapies were initiated day 4 post engraftment with AZA and ALX148 given intraperitoneally every 3 days for a total of 5 doses and for 14 consecutive days by oral gavage for VEN.
- AZA and VEN combination therapies yielded 4 out of 8 mice with progressive disease.
- In contrast, the combination of AZA+VEN+ALX148 completely eliminated tumor growth for 7 out of 9 mice within an 80 day evaluation period. Study is ongoing.



## Critical Importance in Evaluating AML Patients for Clinical Trial with *TP53* Mutations

- P3 ENHANCE-2 Study of Azacitidine (Aza) + Magrolimab vs Aza+Venetoclax or Intensive chemotherapy based on investigator assessment of fitness.
- Triplet studies of Aza+magrolimab+venetoclax and Aza+sabatolimab+venetoclax
- Triplet study of Aza+eprenetapopt (APR-246) + venetoclax
- Additional Triplet Combinations on Top of Aza Backbone are Planned



#### **LACEWING 2020: Study Design and Update**



Post-ASH press release reported that trial failed to meet primary endpoint



#### **Doublet vs Triplet with Venetoclax**





#### FLT3i Triplet with 10 day decitabine





## Aza +/- Ena for Newly Diagnosed IC-Ineligible IDH2









#### Courtesy of Courtney D DiNardo, MD, MSCE

## AGILE Study: AZA +/- Ivosidenib for Newly Dx AML



\*155 sites worldwide, enrolling primarily ex-US due to AZA + VEN approval in the US for front-line treatment.

\*Amendment has modified primary endpoint to event-free survival (EFS)

Press Release 8/2/2021 with Improved EFS and OS; ORR 78%, CR 57% Trial stopped early



#### Menin Inhibitors (SNDX-5613 and KO-539) in MLL-r AML

SN

KO-539



|         | Pt<br># | Age | # Prior<br>Tx | Mutational<br>status          | Dose                 | Meets target<br>PK profile^ | DLT period                                                 | Response Assessment                                                                                    |
|---------|---------|-----|---------------|-------------------------------|----------------------|-----------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| DX-5613 | 2       | 69  | 2             | MLL-r<br>t(10;11)<br>FLT3 ITD | 226 q12 →<br>113 q12 | Yes                         | No DLTs<br>Grade 2 QTc,<br>resolved with dose<br>reduction | Day 28 CRi - improved to CR<br>FISH neg, Flow neg,<br>on study                                         |
|         | 4       | 30  | >3            | None*                         | 226 q12              | PK pending                  | Inevaluable                                                | Progressive Disease<br>off study                                                                       |
|         | 5       | 79  | 2             | MLL PTD                       | 226 q12              | PK pending                  | No DLTs                                                    | Day 28: <b>No Response</b><br>on study                                                                 |
|         | 6       | 61  | 3             | MLL-r<br>t(9;11)              | 113 q12<br>→ 113 QD  | PK pending                  | No DLTs<br>Grade 1 QTc,<br>resolved with dose<br>reduction | Day 28 PRi<br>blast count 40%→ 20%;<br>peripheral blood counts<br>improving; FISH positive<br>on study |

\*Patient did not have either MLLr or NPM1 mutant AML; ^Target PK profile defined as: (1) maintaining steady state levels above IC<sub>55</sub> (~600 ng/mL) for most of dosing interval, (2) maintaining Cmin level above projected IC<sub>50</sub> (~300 ng/mL) and (3) achieving a minimum 24 h AUC of ~30,000 ng\*h/mL

| Clinical activities observed in 6 patients (efficacy evaluable = 8) |                                                      |                     |                        |                                      |  |  |
|---------------------------------------------------------------------|------------------------------------------------------|---------------------|------------------------|--------------------------------------|--|--|
| Dose                                                                | Mutational Profile                                   | CYP3A4<br>inhibitor | # of prior<br>regimens | Clinical Activity                    |  |  |
| 400 mg                                                              | RUNX1, SRSF2, ASXL1,<br>TET2, STAG2, BCOR,<br>PTPN11 | Yes                 | 3                      | Decreased<br>peripheral blasts       |  |  |
| 200 mg                                                              | U2AF1, TET2, p53,<br>DNMT3A, PTPN11                  | No                  | 4                      | Stable disease                       |  |  |
|                                                                     | NPM1, FLT3-ITD, TET2,<br>CUX1                        | Yes                 | 4                      | Morphological<br>leukemia-free state |  |  |
|                                                                     | NPM1, DNMT3A,<br>KMT2D                               | Yes                 | 7                      | CR, MRD-                             |  |  |
| 100 mg                                                              | SETD2, RUNX1                                         | Yes                 | 2                      | CR, MRD+                             |  |  |
| 50 mg                                                               | KMT2A-r                                              | Yes                 | 2                      | Decreasing hydrea requirement        |  |  |

Krivtsov A et al., Cancer Cell 2019; McGeehan, J et al., AACR 2020; Wang E et al., ASH 2020

#### What is MRD – "The Minimal that Kills"

 5 year OS ~ 25% of patients, even in younger patients treated with intensive therapy





## Combinatorial MRD technologies can further improve prognosis



Figure 3. Rate of Relapse According to Results of Next-Generation Sequencing and Multiparameter Flow Cytometry.

Shown is the cumulative incidence of relapse, according to the presence of positive (+) or negative (-) results for the detection of persistent non-DTA mutations during complete remission on next-generation sequencing (NGS) and on multiparameter flow cytometry (MFC).



#### **Oral Azacitidine and MRD**

A Overall Survival



37% Converted to MRD negative by MFC in CC-486 group



### **MRD Directed Therapy**

- As MRD is strongly concordant with OS, MRD negativity may prove to be an approvable registrational endpoint in future studies
- Currently 100s of ongoing studies for risk-adapted MRD directed therapy for patients with AML
  - Including targeted therapy, HMA +/- ven and other novel agents, checkpoint inhibitors, CAR-T, bispecific agents, novel IO, and others



#### What are the next step for AML Patients

- Multiple Phase 1-3 studies with triplet trials on top of a HMA + venetoclax backbone (both targeted and non-targeted) for elderly AML
- ?s on how targeted inhibitors should be incorporated into the treatment paradigm (sequential vs combinatorial; based on MRD???)
  - What happens if have both FLT3 and IDH?
- Discussions of toxicity issues with triplet studies (cytopenias, financial)
- Can we cure some patients?
- Can we discontinue therapy based on MRD status?
- What about young patients with non-good risk disease?
- Will Intensive Chemotherapy go away?



#### Acknowledgements

#### **Moffitt Cancer Center**

Amy McLemore Najla Ali Kathy McGraw Ling Zhang Rami Komrokji Qianxing Mo Eric Padron **Jiqiang Yao** Kendra Sweet **Jeffrey Lancet Amy Aldrich** Chetasi Talati Lisa Nardelli John Puskas Seongsuk Yun Anthony Hunter

#### **MDACC**

Guillermo Garcia-Manero

#### Emory

Anthony Hunter

**<u>GFM</u>** Thomas Cluzeau Pierre Fenaux

Alan List



Supported by the Edward P. Evans Foundation

mds foundation inc.



The state