Locoregional Therapies for HCC. When Two Therapies May be Better than One:

Practical and Data Informed Approach

Christopher D. Malone, MD

Associate Professor of Radiology, Mallinckrodt Institute of Radiology
Biophotonics Research Center
Washington University School of Medicine

Disclosures

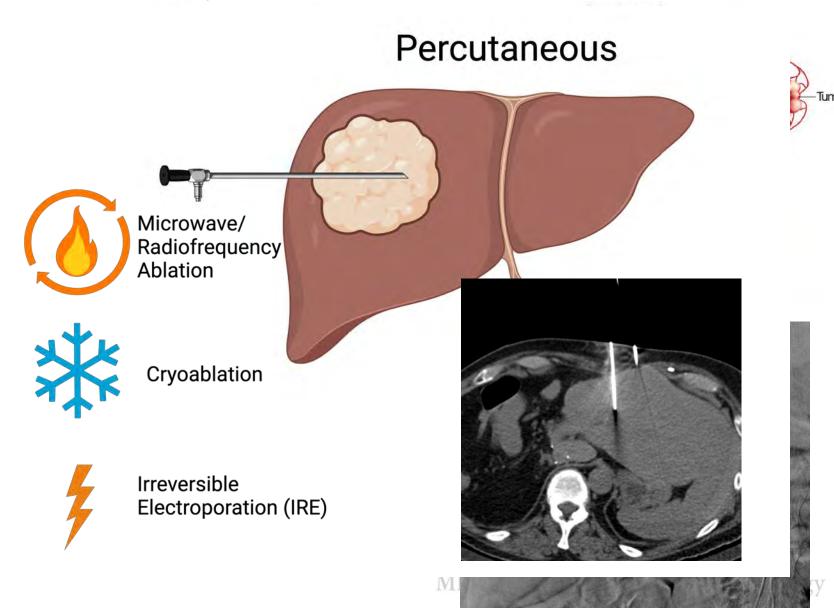
Grant support:

- Society of Interventional Oncology
- American Cancer Society

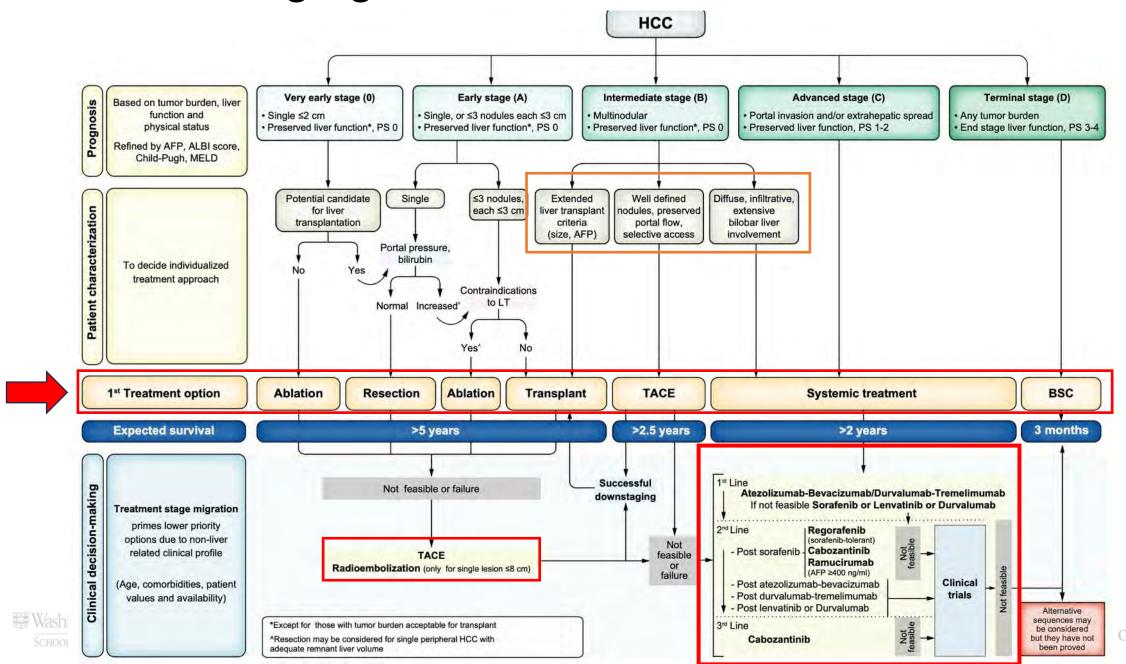
Advisor:

- Immunophotonics, Inc
- AstraZeneca Pharmaceuticals LP
- Boston Scientific

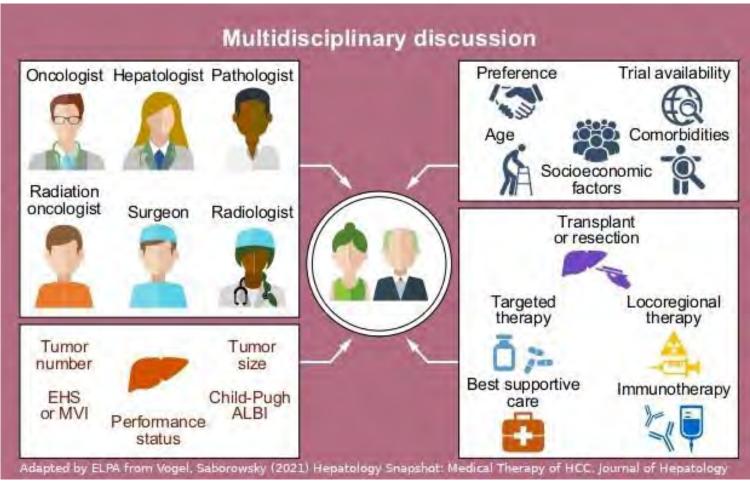
Industry Research support:


- Boston Scientific

Disclaimer

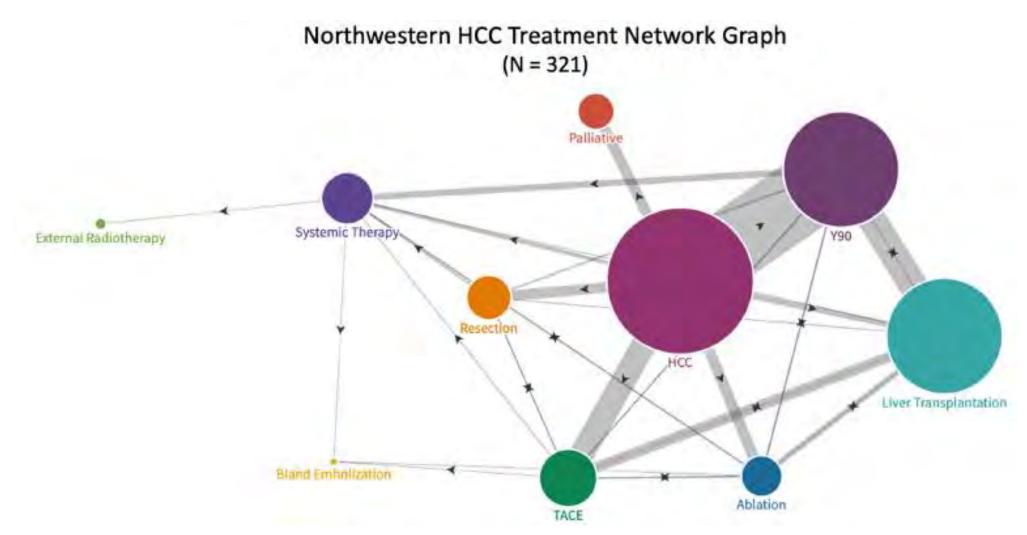


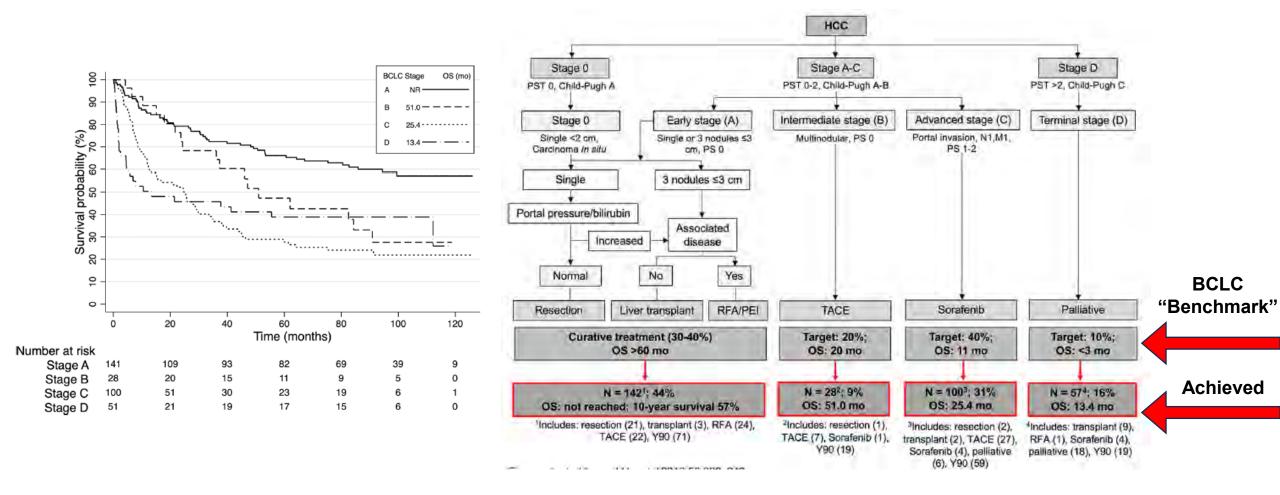
Interventional Radiology and the Liver – Locoregional Therapy Toolkit



BCLC Staging and Treatment for HCC. What's new?

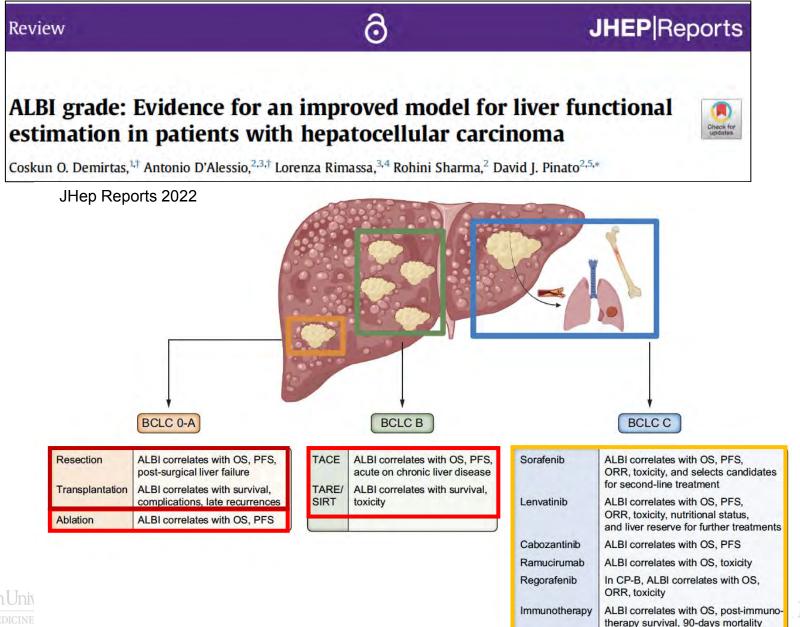
Not One Size Fits All




https://livercancermonth.eu/liver-cancer/

Multidisciplinary team approach, combination and sequencing of multiple therapies (liver function permitting), optimizes and increases chance of <u>curative outcomes</u>

BCLC is Not Dogma


Personalized Approach

What is the Patient's Destination? Managing 2 Diseases!

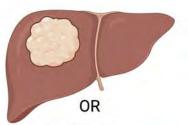
ALBI Score Often Outperforms Child Pugh, Especially in CP A

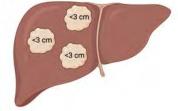
Total Bilirubin and Albumin:

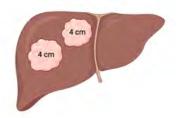
ALBI 1 👍

ALBI 2

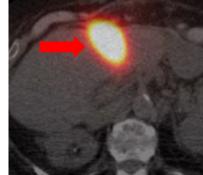
ALBI 3 무

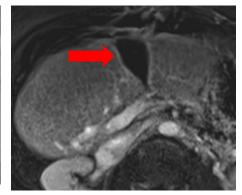

Mallinckrodt Institute of Radiology


Very Early (BCLC 0) through UCSF Extended Transplant (BCLC B)


Focus on *Curative* Intent

Locoregional Therapy as Monotherapy


Solitary tumor, no vascular invasion, no extrahepatic spread, Child Pugh A


Radiation Segmentectomy:

Potential Curative Therapy for Early Hepatocellular Carcinoma¹

	No. of Patients	Survival (%)			
umor No. and Size, Treatment lodality, and Clinical Study		1 y	3 y	5 y	Median Overal Survival (mo)
Solitary ≤3 cm					
Radiation segmentectomy					
Current study	45	100	82	75	Not reached
Surgical resection	- 0				
Pompili et al (34)	246	95	82	74*	Not reached
Huang et al (35)	45	100	96	82	Not reached
Radiofrequency ablation					
Pompili et al (34)	298	98	81	66*	Not reached
Huang et al (35)	57	87	77	55	Not reached
olitary ≤5 cm					
Radiation segmentectomy					
Current study	70	98	66	57	80
Surgical resection					
Chen et al (36)	91	93	73	64*	Not reached
Radiofrequency ablation	- P (-)				
Lencioni et al (25)	145	100	89	61	65
Chen et al (36)	91	94	69	66*	Not reached

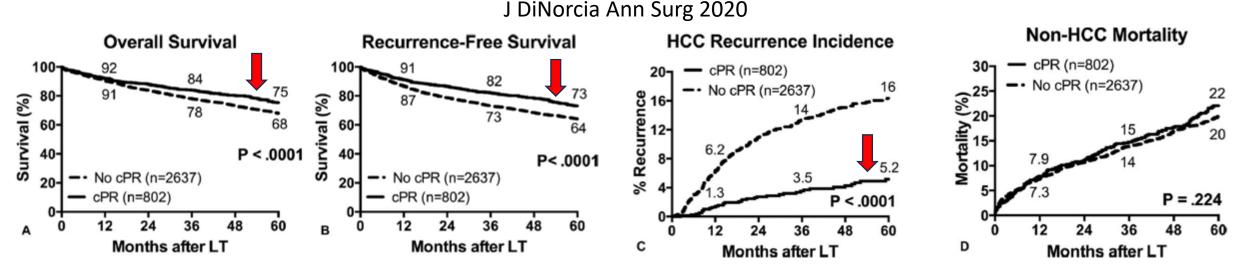
Lewandowski et al. Radiology 2018

Transplant Candidacy?

Liver Transplant

- Most ideal: low recurrence rates and concurrent treatment of cirrhosis
- Transplant for HCC: those in Milan criteria achieve 5-year survival >70%, similar to those without HCC

Locoregional Therapy for Bridging to Transplant



- Rationale to prevent dropouts, maintain patients within Milan
- Relevant in regions with <u>long wait times</u>
- Trends towards improved dropout rates with (L Kulik Hepatology 2018)

Pathologic Response to Pretransplant Locoregional Therapy is Predictive of Patient Outcome After Liver Transplantation for Hepatocellular Carcinoma

Analysis From the US Multicenter HCC Transplant Consortium

Complete pathologic response to locoregional therapy confers better long term post transplant outcomes

Reduce chance of tumor <u>under-staging</u> on explant pathology (assoc w/ worse post transplant survival, Mehta JAMA Oncol 2017)

Downstaging for Transplant for those Beyond Milan Criteria

OPTN policy eligibility for the "downstaging" protocol

T3, ~ **UCSF**

Downstaging Criteria: One lesion > 5 cm and < 8 cm; or 2–3 lesion with at least one > 3 cm and < 5 cm, and total combined diameter ≤ 8 cm; or 4–5 lesions each < 3 cm with total combined diameter ≤ 8 cm [70]

If patient meeting the downstaging criteria are treated with locoregional therapy and are downstaged to T2 disease, they are automatically eligible to MELD tumor exception points

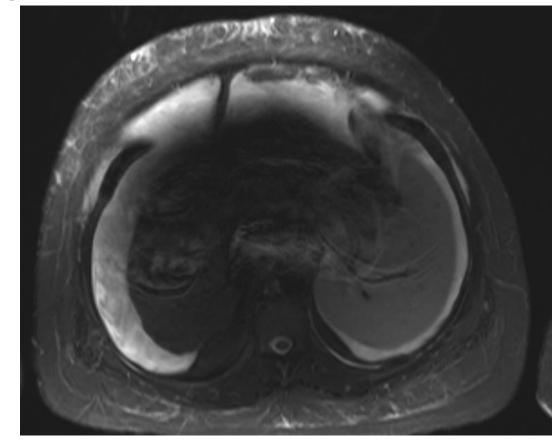
Abdominal Radiology (2021) 46:3528–3539

- Similar OS for T3 (UCSF) patients downstaged to T2 (Milan) compared to initial T2 patients (FY Yao Hepatology 2015), BUT had higher dropout rates
- Significant increase in 1 and 5 year post transplant OS for downstaged T3 patients vs those not downstaged (L Kulik, Hepatology 2018)

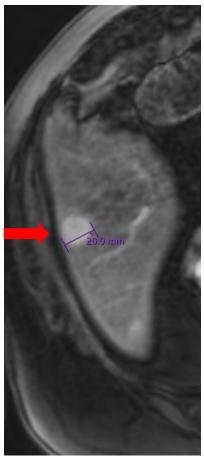
Potential Ceilings in Downstaging

- "All-comers" exceed UNOS-DS criteria, with total tumor diameter
- > 8 cm without EHS or vascular invasion
 - <50% downstaging to Milan if sum of largest lesion + # lesions > 12 (Sinha, Hepatology 2019)
 - 67% successful downstaging in "All-comers" vs 83% in those meeting UNOS-DS criteria at 1 year
 - For every 1 unit increase in largest lesion size (cm) + # of lesions → probability of successful downstaging drops by 14% (Natarajan, AJT 2021)

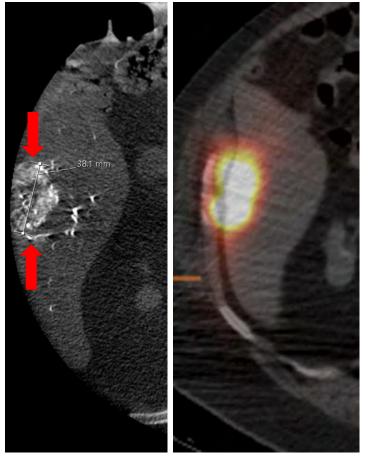
AFP > 100 at transplant → higher risk of HCC recurrence and death (Mehta, Hepatology 2020)


Don't Burn Patients – Recognize Treatable vs <u>Untreatable</u> Progression

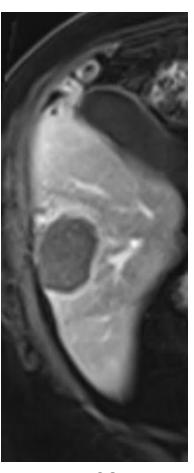
<u>"Treatable" Progression</u>: Potential for more LDT if maintained liver function

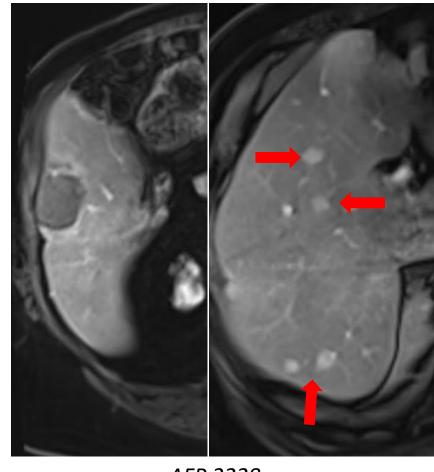


"Untreatable" Progression: liver function deterioration, new vascular invasion or mets

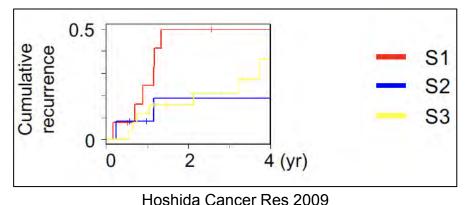


Limited systemic therapy options beyond CP B7


What about this patient?


Solitary 2.0 cm AFP 283

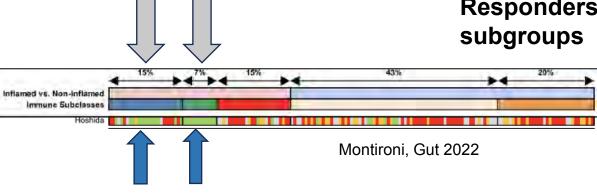
Now 3.8 cm *AFP 7368*


AFP 281

AFP 2228

Washington University in St. Louis
School of Medicine

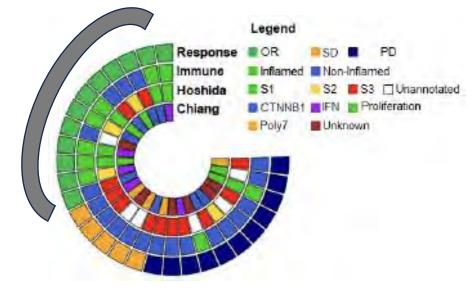
Early Out of Field Progression (OFP) is Relevant



Hoshida S1 gene expression subclass associated with <u>early recurrence</u> after surgical resection. Parallel with early OFP after locoregional therapy

Potential marker of treatment resistance, dissemination of primary tumor.

Inflamed (Immune Active and Exhausted) TIME's enriched with S1 tumor subclass


Responders to ICI's more likely to be S1 subclass and Inflamed subgroups

S1 —— S2

Non Significant

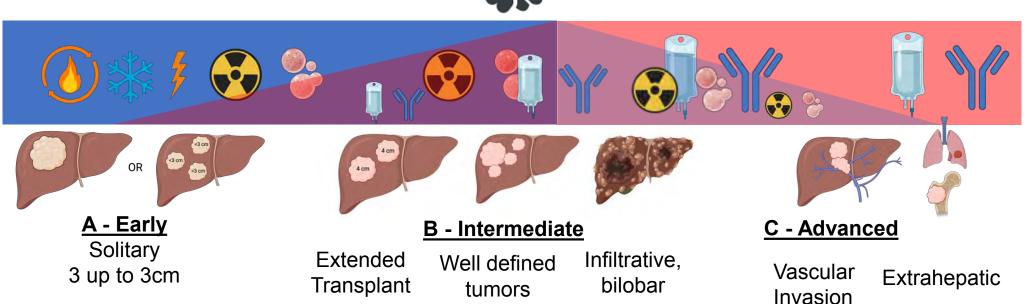
S3

Washington University in St. Louis

Hoshida

Subclasses

Immune Subclasses


nmune Active

Non-inflamed Intermediate Excluded

Haber, Gastroenterology 2023
MIR Mallinckrodt Institute of Radiology

Combination LDT and Systemic (Immuno) Therapies: Current and Future Potentials

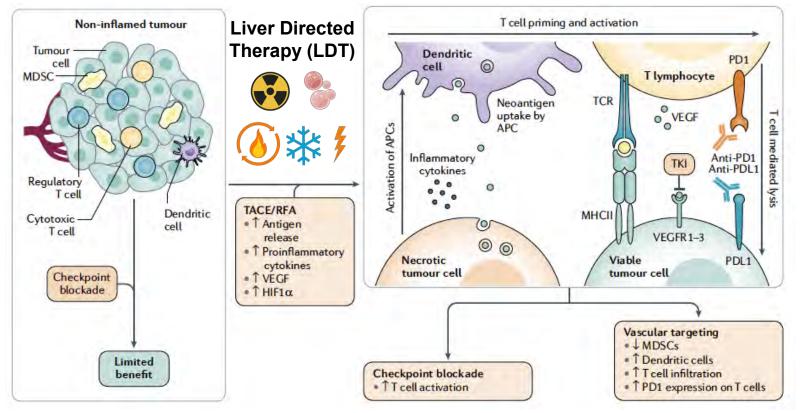
Limitations potentially addressed

Out of field progression

Out of field progression Watershed regions

Complete tumor coverage

Occult microsatellite disease


Low response rates (<30%)

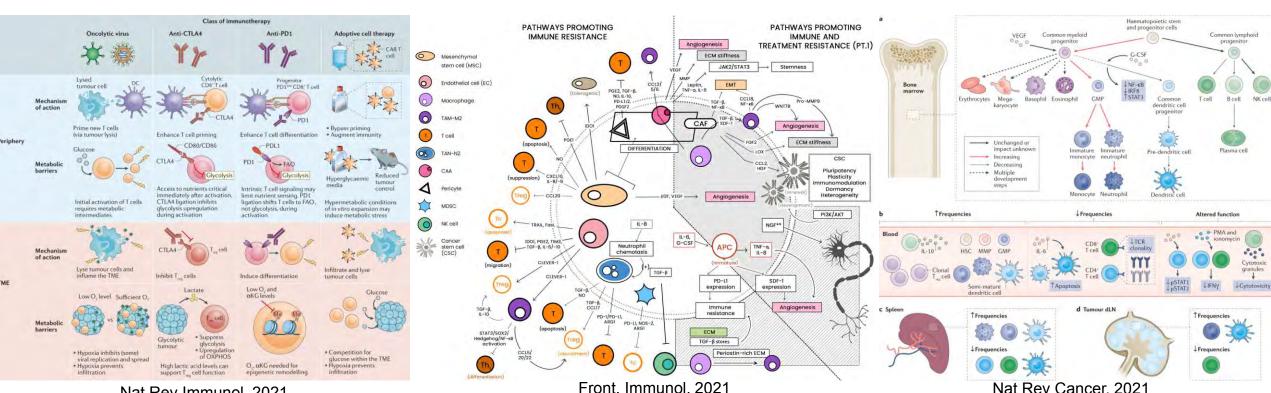
Tolerability and candidacy of ideal regimens

Immunologically cold tumors and microenvironments

Narrow Therapeutic Index

Overarching Rationale for Combination Therapy

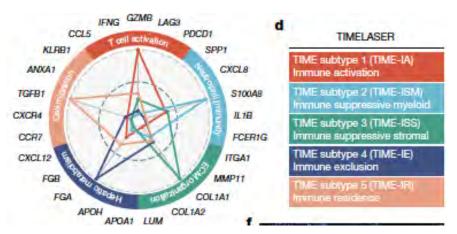
Convert cold tumors to hot/inflamed?

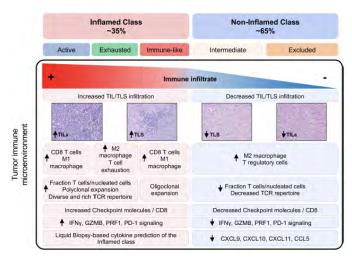

Enable ICI efficacy?

Abscopal effect?

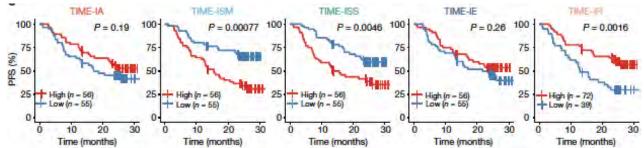
Llovet. Nat Rev Gastroenterol Hepatol. 2021

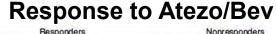
Does this really happen? Is it this simple?

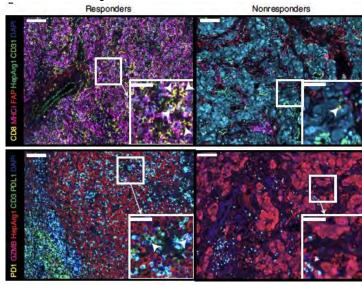

Cancer Immunology is Complicated


Nat Rev Immunol, 2021

Nat Rev Cancer, 2021

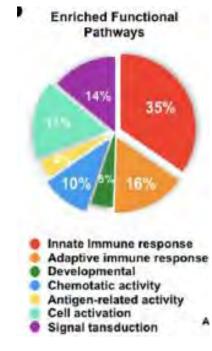

HCC Tumor Immune Microenvironment is <u>Diverse</u>, Impacts Overall Prognosis and Response to ICI


Xue et al. Nature 2022



Montironi et al. Gut 2022

Xue et al. Nature 2022



Zhu et al. Nature Medicine 2022

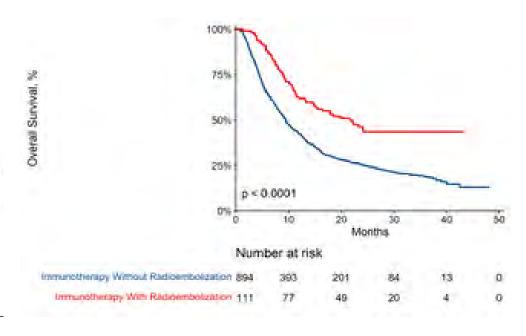
Contemporary advances in characterizing baseline HCC TIME have been <u>agnostic to locoregional therapies</u>

Early Biological Evidence that Y-90 may Augment Anti-tumor Immune Response

Enrichment of granzyme B + CD8+ T cells, innate and adaptive immune responses Y-90-RE induced chemotaxis of CD8+ T cells to TME

Lower Foxp3+CD152+CD4+ T_{req} cells

Early Signal with Y-90


ARTICLE: LIVER

Immunotherapy and Transarterial Radioembolization Combination Treatment for Advanced Hepatocellular Carcinoma

Yeo, Yee Hui MD^{1,2,*}; Liang, Jeff MD^{1,*}; Lauzon, Marie MS³; Luu, Michael MPH³; Noureddin, Mazen MD²; Ayoub, Walid MD²; Kuo, Alexander MD²; Sankar, Kamya MD⁴; Gong, Jun MD⁴; Hendifar, Andrew MD⁴; Osipov, Arsen MD⁴; Friedman, Marc L MD⁵; Lipshutz, H Gabriel MD⁵; Steinberger, Jonathan MD⁵; Kosari, Kambiz MD^{4,6,7}; Nissen, Nicholas MD^{4,6,7}; Abou-Alfa, Ghassan K MD⁸; Singal, Amit G. MD^{9,10}; Yang, Ju Dong MD^{2,4,6,a}

Author Information (9)

The American Journal of Gastroenterology ():10.14309/ajg.000000000002467, August 10, 2023. | **DOI:** 10.14309/ajg.0000000000002467

- National Cancer Database analysis 2017-2019
- TNM Stages 3 and 4 (BCLC B and C). IO vs combined Y-90/IO as first treatments
- Median OS higher in combined Y-90/IO group (19.8 vs 9.5 months)
- Multivariate analysis: combination Y-90/IO associated w/ reduced mortality (HR

0.50, 95%CI: 0.36-0.68, p<0.001

MIR Mallinckrodt Institute of Radiology

Early Prospective Readouts - Y-90 + ICI

Original research

Nivolumab after selective internal radiation therapy for the treatment of

hepatocellular carcinoma: a phase 2,

single-arm study

Open access

Manuel de la Torre-Aláez , ¹ Ana Matilla, ^{2,3} Maria Varela, ⁴ Mercedes Iñarrairaegui, ^{3,5} Maria Reig, ^{3,6} Jose Luis Lledó, ^{3,7} Juan Ignacio Arenas, ⁸ Sara Lorente, ⁹ Milagros Testillano, ¹⁰ Laura Márquez, ² Leonardo Da Fonseca, ⁶ Josepmaria Argemí, ^{3,5} Carlos Gómez-Martin, ¹¹ Macarena Rodriguez-Fraile , ¹² Jose I Bilbao, ¹³ Bruno Sangro^{3,5}

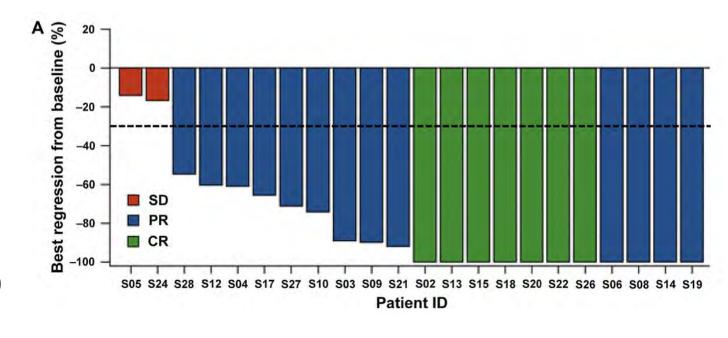
J Immunother Cancer, 2022

- Prospective single arm, BCLC B/C (up to lobar PVT)
- Y-90 followed by Nivo 3 weeks later
- Safety primary endpoint

- Treatment related G3/4 AE's in 5/41 patients (12%)
- ORR 41.5%. 4 patients downstaged to hepatectomy
- Median TTP 8.8 mo, median OS 20.9 months

Early Prospective Readouts - Y-90 + ICI

CLINICAL CANCER RESEARCH | CLINICAL TRIALS: IMMUNOTHERAPY


A Phase I/IIa Trial of Yttrium-90 Radioembolization in Combination with Durvalumab for Locally Advanced Unresectable Hepatocellular Carcinoma

Yun Bin Lee¹, Joon Yeul Nam¹, Eun Ju Cho¹, Jeong-Hoon Lee¹, Su Jong Yu¹, Hyo-Cheol Kim², Jin Chul Paeng³, Jung-Hwan Yoon¹, and Yoon Jun Kim¹

Clin Cancer Res. 2023

- Median TTP 15.2 mo
- Median OS not reached
- 18 mo OS 58.3%
- 2 G3 AE's (fever, neutropenia)

 Phase I/2a, safety and efficacy of Y-90 combined with Durva in 24 locally advanced (BCLC B/C) HCC patients

Early Prospective Readouts – Y-90 + ICI

The Oncologist, 2024, XX, 1–14 https://doi.org/10.1093/oncolo/oyad331 Advance access publication 7 February 2024 Clinical Trial Results

A Pilot Study of Pembrolizumab in Combination With Y90 Radioembolization in Subjects With Poor Prognosis Hepatocellular Carcinoma

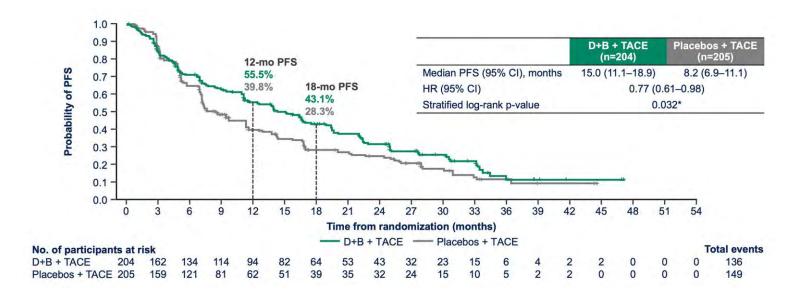
Shawn Yu^{1,†}, Menggang Yu^{2,†}, Barry Keane¹, David M. Mauro¹, Paul R. Helft³, William P. Harris⁴, Hanna K. Sanoff¹, Matthew S. Johnson⁵, Bert O'Neil⁶, Autumn Jackson McRee⁷, Ashwin Somasundaram^{*,‡,1,©}

- Prospective, multicenter trial evaluating safety and efficacy of Y-90 + Pembro in 29 patients w/ poor prognosis HCC (multifocal, diffuse, or macrovascular invasion HCC, BCLC B/C).
- ORR 30.8% (RECIST 1.1)
- Median PFS 9.95 mo
- Median OS 27.3 mo

Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial

Andrew X Zhu, Richard S Finn, Julien Edeline, Stephane Cattan, Sadahisa Ogasawara, Daniel Palmer, Chris Verslype, Vittorina Zagonel, Laetitia Fartoux, Arndt Vogel, Debashis Sarker, Gontran Verset, Stephen L Chan, Jennifer Knox, Bruno Daniele, Andrea L Webber, Scot W Ebbinghaus, Junshui Ma, Abby B Siegel, Ann-Lii Cheng, Masatoshi Kudo, for the KEYNOTE-224 investigators*

Lancet Oncology 2018

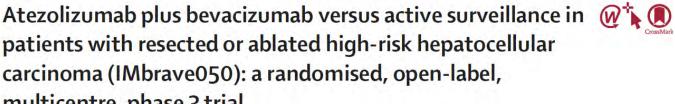

- ORR 18%
- Median PFS 4.9 mo
- Median OS 12.9 mo

EMERALD-1: A phase 3, randomized, placebo-controlled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization.

Riccardo Lencioni, Masatoshi Kudo, Joseph Erinjeri, Shukui Qin, Zhenggang Ren, Stephen Chan, Yasuaki Arai, Jeong Heo, Ahn Mai, Jose Escobar,

ASCO GI 2024

- Multicenter phase 3 RCT unresectable, TACE-eligible HCC
 - Majority intermediate stage, BCLC B (57.3%)
- TACE + Durva + Bev vs TACE + Durva vs TACE alone
- PFS primary endpoint


Met primary endpoint: significantly improved PFS in D+B+TACE vs TACE alone Significantly longer TTP in D+B+TACE vs TACE alone No new safety signals

As Adjuvant?

patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial

Shukui Qin*, Minshan Chen*, Ann-Lii Chenq*, Ahmed O Kaseb*, Masatoshi Kudo*, Han Chu Lee*, Adam C Yopp*, Jian Zhou, Lu Wanq, Xiaoyu Wen, Jeong Heo, Won Young Tak, Shinichiro Nakamura, Kazushi Numata, Thomas Uquen, David Hsiehchen, Edward Cha, Stephen P Hack, Qinshu Lian, Ning Ma, Jessica H Spahn, Yulei Wanq, Chun Wu, Pierce K H Chow*, for the IMbrave050 investigators† molucu overali survivar (OO) and salety.

Summary Background

The primary endpoint of RFS was met at the first interim analysis in early 2023. As of a clinical cut-off date of 3 May 2024, updated analysis data shows that the RFS benefit seen at the first interim analysis is not sustained with longer follow-up. Of note, OS data remain immature and continue to not show a benefit. The overall safety profile remains consistent with the first interim analysis. The data from this analysis will be presented at an upcoming medical congress.

- Atezolizumab plus bevacizumab - Active surveillance Number at risk (number censored) 305 (10) 290 (12) 268 (15) 211 (53) 139 (105) 1 (223) NE (NE) 97 (139) 63 (164) 37 (188) 283 (12) 245 (12) 214 (20) 179 (44) 131 (84) 93 (114) 57 (148) 36 (166) 20 (181) 1 (200) NE (NE)

August 2024

Subject:

Tecentriq (atezolizumab) in combination with Avastin (bevacizumab) is NOT approved as adjuvant therapy in patients with hepatocellular carcinoma at high risk of recurrence after surgical resection or ablation and should not be used in this setting

Dear Healthcare Provider:

The purpose of this letter is to inform you of important new information that impacts the benefit-risk of off-label use of Tecentrig and Avastin in hepatocellular carcinoma (HCC) patients in the adjuvant setting, following

> ts at the entriq

HCP) is

 There is no impact on the approved indication of unresectable or metastatic HCC, where the combination of Tecentrig and Avastin remains a standard of care treatment option.

Background on the recent benefit-risk data

IMbrave050 is a Phase 3, multicenter, randomized, open-label study of Tecentriq + Avastin vs active surveillance as adjuvant therapy in patients with HCC at high risk of recurrence after surgical resection or ablation.

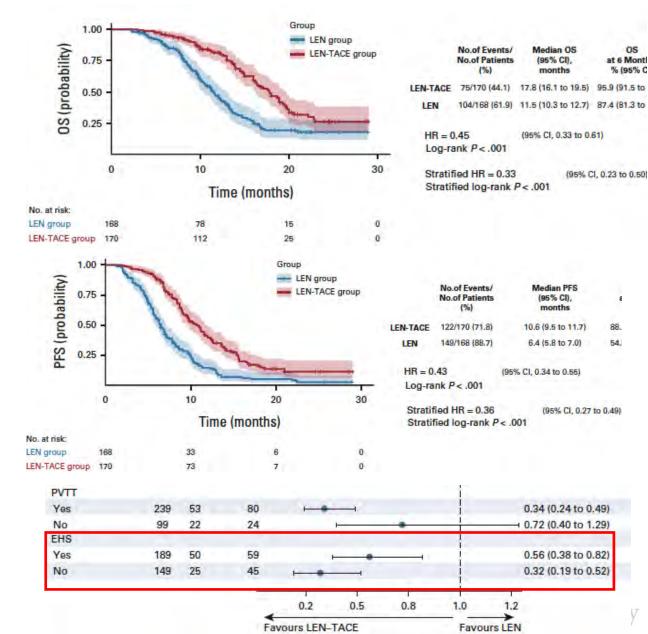
The primary endpoint was independent review facility (IRF)-assessed RFS1. Select secondary endpoints included overall survival (OS) and safety.

The primary endpoint of RFS was met at the first interim analysis in early 2023. As of a clinical cut-off date of 3 May 2024, updated analysis data shows that the RFS benefit seen at the first interim analysis is not sustained with longer follow-up. Of note, OS data remain immature and continue to not show a benefit. The overall safety profile remains consistent with the first interim analysis. The data from this analysis will be presented at an upcoming medical congress.

Based on this data, the benefit-risk profile does not support the use of Tecentriq plus Avastin as an adjuvant therapy for HCC.

Adding Liver Directed Therapy in Advanced Stage?

Lenvatinib Combined With Transarterial Chemoembolization as First-Line Treatment for Advanced Hepatocellular Carcinoma: A Phase III, Randomized Clinical Trial (LAUNCH)


Zhenwei Peng, MD, PhD^{1,2}; Wenzhe Fan, MD³; Bowen Zhu, MSc³; Guoying Wang, MD⁴; Junhui Sun, MD⁵; Chengjiang Xiao, MSc⁶; Fuxi Huang, MSc⁷; Rong Tang, MSc⁸; Yu Cheng, MSc⁹; Zhen Huang, MSc¹⁰; Yuchuang Liang, MSc¹¹; Huishuang Fan, MSc¹²; Liangliang Qiao, MSc¹³; Fuliang Li, MSc¹⁴; Wenquan Zhuang, MD¹⁵; Baogang Peng, MD¹⁶; Jiping Wang, MD, PhD¹⁷; Jiaping Li, MD³; and Ming Kuang, MD, PhD^{1,16}

JCO 2022

Locally advanced, phase 3 RCT:

Lenvatinib vs Lenvatinib + TACE (on demand)

Characteristic	LEN-TACE Group (n = 170)	LEN Group (n = 168	
ALBI grade, No. (%)			
Grade 1	41 (24.10)	53 (31.50)	
Grade 2	129 (75.90)	115 (68.50)	
Intrahepatic tumors, No. (%)			
Single	30 (17.60)	38 (22.60)	
Multiple	140 (82.40)	130 (77.40)	
Main tumor size, cm, median (IQR)	8.4 (4.5-9.5)	7.4 (4.1-9.7)	
< 5, No. (%)	47 (27.60)	58 (34.50)	
≥ 5, No. (%)	123 (72.40)	110 (65.50)	
Primary tumor, No. (%)			
Yes	157 (92.40)	142 (84.50)	
No	13 (7.60)	26 (15.50)	
Macroscopic portal vein invasion, No. (%)			
Yes	122 (71.80)	117 (69.60)	
No	48 (28.20)	51 (30.40)	
Extrahepatic spread, No. (%)			
Yes Yes	94 (55.30)	95 (56.50)	
No	76 (44.70)	73 (43.50)	

Ongoing for HCC (not exhaustive)

EMERALD-Y90

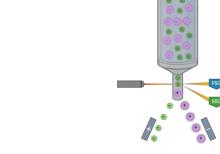
	NCT Number	Study Title Study Title	Interventions
		A US Study to Evaluate Transarterial Radioembolization (TARE) in Combination	
RALD-Y90		With Durvalumab and Bevacizumab Therapy in People With Unresectable	DRUG: Durvalumab DRUG: Bevacizumab PROCEDURE:
	NCT06040099	Hepatocellular Carcinoma Amenable to TARE	Transarterial Radioembolization (TARE)
	NCT05992584	Lenvatinib, Sintilimab Plus SIRT for Unresectable HCC	DRUG: Lenvatinib, sintilimab plus SIRT
			DRUG: Durvalumab DRUG: Tremelimumab RADIATION:
	NCT05809869	Immunotherapy and Radioembolisation for Metastatic Hepatocellular Carcinoma	Yttrium-90 radioembolisation
		Clinical Investigation Evaluating Safety and Efficacy of Selective Intra-arterial	
		166Holmium Radiation Therapy in Combination With Atezolizumab and	
	NCT05705791	Bevacizumab for Non Resectable Hepatocellular Carcinoma	DEVICE: QuiremSpheres
	NCT05701488	SIRT With Tremelimumab and Durvalumab for Resectable HCC	DRUG: Durvalumab DRUG: Tremelimumab DEVICE: SIRT
		Therasphere® and Systemic Therapy for Patients With Hepatocellular	
	NCT05620771	Carcinoma That is High-risk	DRUG: Atezolizumab and Bevacizumab DRUG: Y90 + TKI
		Multinational Phase II Trial to Compare Safety and Efficacy of SIRT (Y-90 Resin	COMBINATION_PRODUCT: SIRT-Y90 with Atezolizumab +
		Microspheres) Followed by Atezolizumab Plus Bevacizumab, vs SIRT (SIRT-Y90)	Bevacizumab COMBINATION_PRODUCT: SIRT-Y90 with
	NCT05377034	Followed by Placebo in Locally Advanced HCC Patients	Placebo (IV)
			DEVICE: TheraSphere Y-90 glass microsphere
ROWAN			therapy DRUG: Durvalumab (Imfinzi)
	NCT05063565	TheraSphere With Durvalumab and Tremelimumab for HCC	immunotherapy DRUG: Tremelimumab immunotherapy
		Study of Atezolizumab and Bevacizumab With Y-90 TARE in Patients With	OTHER: Y-90 TARE DRUG: Atezolizumab DRUG:
	NCT04541173	Unresectable Hepatocellular Carcinoma (HCC)	Bevacizumab
		Durvalumab and Tremelimumab in Combination With Either Y-90 SIRT or DEB-	DRUG: Tremelimumab DRUG: Durvalumab PROCEDURE: Y-
	NCT04522544	TACE for Intermediate Stage HCC	90 SIRT PROCEDURE: DEB-TACE
		Study of Y90-Radioembolization With Nivolumab in Asians With Hepatocellular	
	NCT03033446	Carcinoma	RADIATION: Y-90 Radioembolization DRUG: Nivolumab

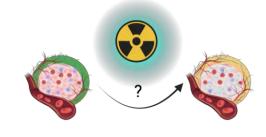
ClinicalTrials.gov (accessed Feb 2024)

TABLE 2 Selected Phase 2/3 studies combining systemic therapy and liver-directed therapy for intermediate-stage (BCLC B) HCC

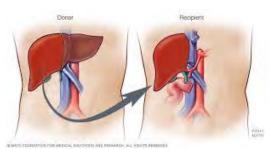
Systemic ICI therapy arms	Liver-directed therapy	Design	Sample size	Primary end points	NCT/Trial ID
Durvalumab + bevacizumab, durvalumab monotherapy, or placebo	TACE	3-arm RP3	600	PFS	NCT03778957 (EMERALD-1)
Nivolumab + Ipilimumab, nivolumab monotherapy, or placebo	TACE	3-arm RP3	765	TTP, OS	NCT04340193 (CheckMate-74W)
Nivolumab	TACE	2-arm RP2/3	522	OS, TTP	NCT04268888 (TACE-3)
Lenvatinib + pembrolizumab or placebo (PO + IV)	TACE	2-arm RP3	950	PFS, OS	NCT04246177 (LEAP-012)
Camrelizumab + rivoceranib	TACE	RP3	360	PFS	NCT05320692

Abbreviations: BCLC, Barcelona Clinic Liver Cancer, ICI, immune checkpoint inhibitors; OS, overall survival; PFS, progression free survival; TACE, trans-arterial chemo-embolization; TTP, time to tumor progression.


Key unanswered questions. Field in its Infancy.



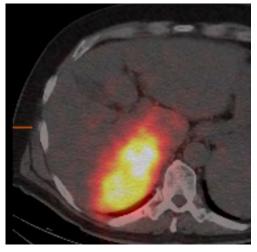
Patient Selection

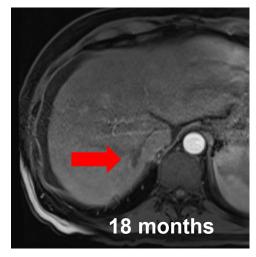


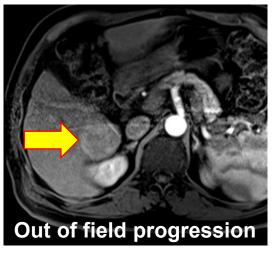
Feasible Biomarkers

How does each HCC TIME adapt/respond to various locoregional therapies and dosing heterogeneities/profiles?

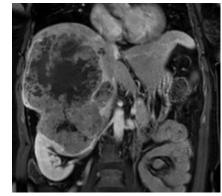
Peri-transplant setting

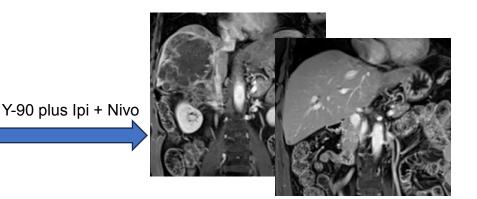

Patient Selection: Which Early and Intermediate Stage (BCLC A, B) HCC's Would Most Benefit from ICI + Locoregional?


- Outside of Advanced stage (BCLC C), combination strategies with ICI still done <u>empirically</u>
 - Limitations in peri-transplant setting
 - Not all Early and Intermediate stage patients will benefit from combination therapy (plus new AE profile)
 - Many have long-durable responses to ablative therapies alone


Conversely, who are late Advanced stage (EHS, Vp4) patients who would benefit from locoregional as adjuvant?

Immunotherapy (ICI) can make Locoregional Therapy look better and vice versa


ICI as Adjuvant?


Case Report

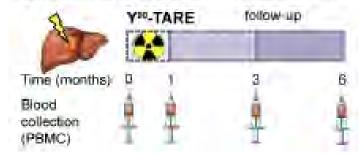
Ipilimumab and nivolumab plus radioembolization as salvage therapy for atezolizumab and bevacizumab refractory hepatocellular carcinoma resulting in complete pathologic response

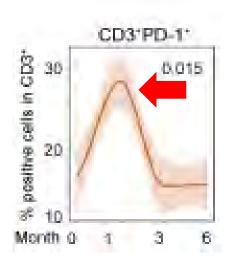
Claudia R. Silver, BS^a, Cynthia De la Garza-Ramos, MD^{b,e}, John A. Stauffer, MD^c, Umair Majeed, MBBS, MD^d, Jianfeng Wang, MD^c, Beau B. Toskich, MD^b

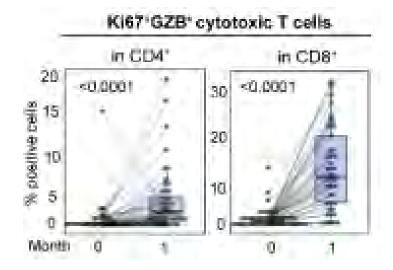
Extrahepatic and IVC invasion, *progressed on Atezo/bev*

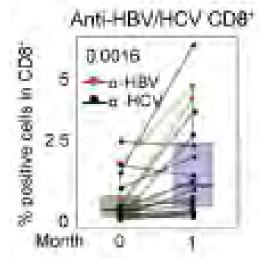
Hepatectomy with *complete path response*

Y90 as Adjuvant?


Timing: ICI within 1 month?


Y⁹⁰-radioembolisation in hepatocellular carcinoma induces immune responses calling for early treatment with multiple checkpoint blockers


Rivoltini et al Gut 2022


Study design

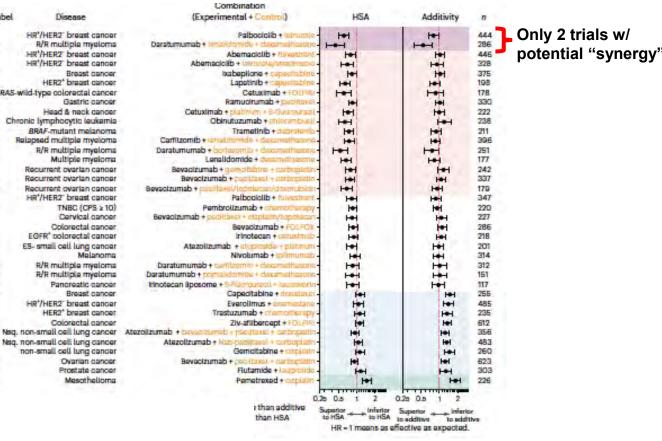
HCC patients (n=49) with preserved hepatic function (Child Pugn ≤B7, MELD score ≤10) and no indication to liver transplantation, undergoing Y**TARE (as first-line locoregional treatment) and longitudinal blood immune monitoring

Actual Synergy is **Elusive**. Seeking Safe Additivity More Realistic

Fig.4 label

21

Received: 12 April 2023


Haeun Hwangbo⊕ ¹², Sarah C. Patterson⊕¹, Andy Dal⊕³, Deborah Plana⊕⁴& Adam C. Palmer⊕¹

Accepted: 11 October 2023

2 + 2 = 3-4 more likely than 2 + 2 = 5

Don't want 2 + 2 < 2

is the
JUICE worth the
SUIFF7F?

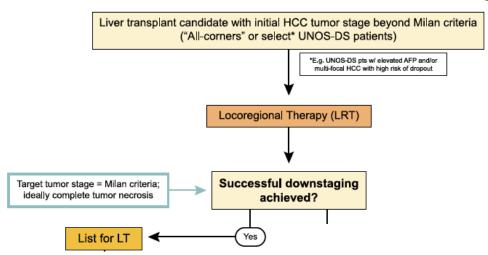
"Synergy is neither a necessa

ffective drug combinations."

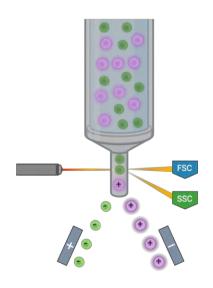
What about in the Peri-Transplant Setting?

Still many unknowns

UNOS – receipt of ICI should not exclude patients from undergoing transplant, but consider ~ 12 week washout period


Opportunities to extend curative outcomes to those with residual viable disease or not downstaged by LRT alone

What about in the Peri-Transplant Setting?


REVIEW

Refining the approach to down-staging transplantation: Patient selection, loco and systemic therapies

Mehta Hepatology 2024

Feasible Biomarkers

We need **better biomarkers** to select patients

- HCC is *diverse*
- Currently mostly based on disease "tempo"

Development of noninvasive imaging and liquid biopsy (ctDNA, extracellular vessicles, etc...) biomarkers will require **primary tissue sampling**

 Limited with current diagnostic approach. We don't usually have tissue on these patients.

Conclusions

- HCC treatment paradigm is increasingly complex
- Getting patients to curative outcomes should be our north star
- Advancements in **both** locoregional (Y-90 personalized dosimetry, ablation modalities, etc...) and systemic therapies are tipping more BCLC B and C stage patients towards *durable and curative* outcomes
- Critical need to better understand biology trajectory at earlier stages to better inform combination approaches
- With rationale combination approaches that minimize toxicity, can push envelope even further to cure the previously uncurable

Thank you

MIR Mallinckrodt Institute of Radiology