Role of Immunotherapy and Combination Approaches in Advanced Cholangiocarcinoma

Amit Mahipal MBBS, MPH

Professor

Director GI Oncology

UH Seidman Cancer center

Case Western Reserve University

February 8, 2025

NCI Comprehensive Cancer Center

A Cancer Center Designated by the National Cancer Institute

Background

- Annual incidence in US: 12,190
- Overall incidence has increased progressively worldwide over the past four decades.
- Aggressive disease with five year-overall survival rates for advanced stage disease <2%.
- Only 15-20% of the patients are candidates for surgical resection

Anatomical Classification

Mutation Profile

Intrahepatic	Prevalence
FGFR1-3 fusions, amplifications, and mutations	11-45%
IDGH1 or IDH2 mutation	23-28%
TP53 mutation	2.5-44%
ARID1A mutation	15-36%
MCL-1 mutation	16-21%
EGFR expression	11-27%
CDKN2A or CDNK2B loss	6-30%
KRAS mutation	11-25%
MCL1 amplification	21%
SMAD4 mutation	4-17%
MLL3 mutation	15%
BAP1 mutation	13%
HER3 amplification	7%
CDK6 mutation	6%

Gallbladder cancer	Prevalence
TP53 mutation	47-59%
HER2 amplification	10-19%
CDKN2A or CDKN2B loss	6-19%
ARID1A mutation	13%
PIK3CA mutation	6-12.5%
NRAS mutation	6%
BRAF mutation	6%
GNAS mutation	6%

Extrahepatic	Prevalence
TP53 mutation	40%
KRAS mutation	8-42%
SMAD4 mutation	21%
CDKN2A or CDKN2B loss	17%
HER2 amplification	11-17%
ARID1A mutation	12%
EGFR expression	5-9%
PIK3CA mutation	7%

FGFR fusion partner	Frequency		
FGFR2-AHCYL	7/102 (7%)		
FGFR2-BICC1	2/102 (2%)		
	41/107		
	(38%)		
	1/28 (4%)		
	17/107		
	(16%)		
FGFR2-MGEA5	1/6 (17%)		
FGFR2-TACC3	1/6 (17%)		
	1/28 (4%)		
FGFR-KIAA1598	1/28 (4%)		

Tella et al Lancet oncology 2020; Kayhaniyan et al. WJGO 2017 Cleveland | Ohio

Principles of Systemic Therapy

- Adjuvant treatment
 - Capecitabine (phase 3 trial)
 - Gemcitabine based
- Gemcitabine + cisplatin remained standard chemotherapy backbone for first line advanced BTC for more than a decade
- Addition of durvalumab/pembrolizumab to gemcitabine + cisplatin has additive effect with median OS ~13 months
- FOLFOX is second line chemotherapeutic option for patients who failed gemcitabine + cisplatin with median OS of 6-7 months.
- Targeted treatments in selected population

Adjuvant Therapy

Ю

Trial	Regimen	N	RFS (months)	OS (months)
PRODIGE12-	GEMOX	98	30.4	75.8
ACCORD18	Observation	98	18.5	50.8
BCAT	Gemcitabine	117	36	62.3
	Observation	108	39.9	63.8
KHBO1208	Gemcitabine	70	1-year: 51.4%	1-year: 80%
	S-1	70	1-year: 62.9%	1-year: 97.1%
BILCAP	Capecitabine	223	25.9	51.1 (53)
	Observation	224	17.4	36.4 (36)
JCOG1202/AS	S-1	218	63.6	NR
COT	Observation	222	42	6.1
ACCELERATE	GemOX/GemCis + CRT GemOx/GemCis	45 49	NS	NS
ACTICCA-1	Gemcitabine+cisplatin Capecitabine		NA	NA

Treatment arm in each of these trials did not achieve statistically significant difference with

the exception of per-protocol analysis of BILCAP trial and JCOG1202 trial. University Hospitals Seidman Cancer Center

BILCAP study: Per Protocol Analysis

BILCAP study

SWOG 0809 Trial

- Single arm Phase 2 trial
- 79 patients
 - Extra hepatic cholangiocarcinoma
 - Gallbladder cancer
- Treatment
 - 4 cycles of gemcitabine + capecitabine
 - Concurrent chemoradiation therapy with capecitabine
- Median OS: 35 months
- 2-year OS: 65%

Adjuvant Treatment

- Capecitabine is standard of care
 - BILCAP was largest trial
 - Statistically significant difference based on per-protocol analysis
- Future trial results with S-1 and gemcitabine + cisplatin may change management
- Neoadjuvant therapy remains experimental
- Role of radiation therapy remains unclear
 - R1 resection
 - Extrahepatic cholangiocarcinoma
 - Gallbladder cancer
 - Lymph node positive

First line chemotherapy

Trial	Regimen	Ν	RR	PFS (months)	OS (months)
Glimelius et al	5-FU + etoposide Observation	47 43			6.5 2.5
ABC-02	Gem-Cis	204	26.1%	8	11.7
	Gemcitabine	206	15.5%	5	8.1
BT-22	Gem-Cis	42	19.5%	5.8	11.2
	Gemcitabine	42	11.9%	3.7	7.7
PRODIGE-38	FOLFIRINOX Gem-Cis	92 93	NA	6.2 7.4	11.7 13.8
S1815	Gem-Cis-Abraxane	294	29%	8.2	14.0
	Gem-Cis	147	21%	6.4	12.7
TOPAZ-1	Gem-Cis	341	15.5%	5.7	11.5
	Gem-Cis-Durvalumab	344	26.1%	7.2	12.8
KEYNOTE-966	Gem-Cis	536	29%	5.6	10.9
	Gem-Cis-Pemrolizumab	533	29%	6.6	12.7

ABC-02 Trial

Median PFS: 8 vs 5 months

Median OS: 11.7 vs 8.1 months

University Hospitals Seidman Cancer Center

Valle J et al. N Engl J Med 2010;362:1273-1281.

Cleveland | Ohio

TOPAZ-1 Trial

Primary endpoint: OS

Median duration of follow-up (95% CI) was 16.8 (14.8–17.7) months with durvalumab + GemCis and 15.9 (14.9–16.9) months with placebo + GemCis. CI, confidence interval; GemCis, gemcitabine and cisplatin; HR, hazard ratio; mo, month; OS, overall survival.

TOPAZ-1 Trial: Updated OS

University Hospitals Seidman Cancer Center

TOPAZ-1 Trial

Secondary endpoint: PFS

Oh et al. ASCO GI symposium, 2022 Cleveland | Ohio

TOPAZ-1 Trial

Secondary endpoint: Tumor response

TOPAZ-1: PDL-1 is not a good biomarker

OS in subgroups by PD-L1 expression

CI, confidence interval; IC, immune cell; OS, overall survival; PD-L1, programmed cell death ligand-1; TC, tumor cell; TAP, tumor area positivity

Tumor Area Positivity (TAP) score using the

TOPAZ-1: Genetic alterations

Exploratory OS Subgroup Analysis by Genomic Alteration Status ¹					
-	-	IMFINZI + GemCis n/N (%)	Placebo + GemCis n/N (%)		HR (95% CI)
Biomarker evaluable patients	[151/214 (70.6)	181/227 (79.7)	(HOH)	0.76 (0.61-0.94)
TP53	Wild-type	74/111 (66.7)	85/115 (73.9)		0.78 (0.57-1.07)
	Alteration	77/103 (74.8)	96/112 (85.7)		0.74 (0.55-1.00)
CDKN2A/2B/MTAP loss	Wild-type	112/164 (68.3)	131/166 (78.9)	HE-H	0.71 (0.55-0.91)
	Alteration	39/50 (78.0)	50/61 (82.0)		0.95 (0.62-1.45)
KRAS	Wild-type	110/158 (69.6)	139/177 (78.5)		0.81 (0.63-1.04)
	Alteration	41/56 (73.2)	42/50 (84.0)	· • • • • •	0.55 (0.35-0.86)
48/044	Wild-type	120/174 (69.0)	145/175 (82.9)	+0+1	0.66 (0.52-0.85)
ARIDIA	Alteration	31/40 (77.5)	36/52 (69.2)		1.22 (0.75-1.99)
10111	Wild-type	139/192 (72.4)	172/210 (81.9)		0.77 (0.61-0.96)
IUNI	Alteration	12/22 (54.5)	9/17 (52.9)		0.76 (0.31-1.89)
	Wild-type	138/199 (69.3)	165/207 (79.7)		0.72 (0.57-0.90)
ERBB2 (HER2) amplification-**	Alteration	13/15 (86.7)	16/20 (80.0)		1.71 (0.82-3.56)
PDCA4 /2	Wild-type	147/203 (72.4)	175/219 (79.9)	101	0.78 (0.62-0.97)
BRCA1/2	Alteration	4/11 (36.4)	6/8 (75.0)		NC ^b
FGFR2 rearrangement	Wild-type	149/210 (71.0)	173/216 (80.1)	101	0.76 (0.61-0.95)
	Alteration	2/4 (50.0)	8/11 (72.7)	0.00	NC ^b
PDAC	Wild-type	144/206 (69.9)	173/219 (79.0)	101	0.76 (0.61-0.95)
BRAF	Alteration	7/8 (87.5)	8/8 (100.0)		NC ^h

Clinically actionable alterations 🏮 Most common alterations in the TOPAZ-1 trial

0.062 0.125 0.25 0.5 1 2 4 8 16

Favors IMFINZI + GemCis Favors placebo + GemCis

KEYNOTE-966

Second Line Treatment

- No FDA approved chemotherapeutic regimen
- FOLFOX is most commonly used
- Other chemotherapeutic regimens mostly based on small phase 2
 trials/retrospective studies
 - 5-Fluorouracil + nal-irinotecan
 - FOLFIRI/XELIRI
 - Single agent fluoropyrimidine
 - Docetaxel

ABC-06

ABC-06 study design

Phase III, randomised, open-label

Inclusion criteria

- Histo/cytologically verified advanced BTC
- ECOG performance score 0-1
- Progression after 1st-line CisGem
- Max 6 weeks progression to randomisation
- Adequate haematological, renal & hepatic function

Arm A

Active Symptom Control (ASC)

- May include: biliary drainage, antibiotics, analgesia, steroids, anti-emetics etc
- 4-weekly clinical review

Arm B

Active Symptom Control + mFOLFOX

- Chemotherapy every 14 days for up to 12 cycles
- Day 1: Oxaliplatin 85mg/m², L-folinic acid 175 mg (or folinic acid 350 mg), 5 FU 400 mg/m² (bolus), 5 FU 2400 mg/m² 46 hours continuous infusion
- 4-weekly clinical review after chemotherapy
- 3-monthly radiological assessment

Follow up

- Overall survival = primary end-point
- Until death or until completion of 12 months after enrolment of the final patient (whichever happened first)

Stratification factors

A Platinum sensitivity (yes vs. no; determined from first-line CisGem*)
 Serum albumin (<35 vs. ≥35 g/L)
 Stage (locally advanced vs. metastatic disease)
</p>

*determined from first-line CisGem: sensitive (progression after three months (90 days) of day 1 of the last cycle of 1st-line CisGem), refractory (progression during 1st line CisGem), resistant (progression within the first three months (90 days) after completion of day 1 of the last cycle of 1st line CisGem). CisGem: cisplatin and gemcitabine; BTC: biliary tract cancer; ECOG: Eastern Cooperative Oncology Group

Lamarca et al, 2019 ASCO Annual monthly

ABC-06

University Hospitals Seidman Cancer Center

Lamarca et al, 2019 ASCO Annual monthing

Cleveland Ohio

Prognostic factors for second line chemotherapy

- Excellent performance status (ECOG: 0)
- PFS on first line chemotherapy > 6 months
- Prior surgery on primary tumor
- Low CA 19-9
- Can mutations predict?
 - KRAS and TP53 mutations: worse outcomes
 - FGFR2 fusion: better outcomes

Seidman Cancer Center

Tella, Mahipal et al. Lancet Oncology 2020

Cleveland Ohio

Treatment Algorithm

Locoregional Therapies: Y90

Y90 Radioembolization: MISPHEC trial

Edeline et al. JAMA 2019

Locoreginal Therapy: Hepatic Artery Infusion Pump

Hepatic artery Infusion: Phase 2 trial

Percent change in tumor size from baseline

Implications

- Current systemic therapies are associated with limited survival
- Urgent need to develop novel therapies to improve outcomes
- All advanced patients should undergo:
 - NGS
 - Her-2 testing
 - MSI testing
- Selected patients can be considered for
 - Liver transplant
 - Y90 radioembolization
 - HAI
- Targeted therapies hold promise for selected patients population including FGFR2 fusion, IDH mutations, MSI-high, her-2 amplifications but still limited to minority of population
- Targeting RAS, CDKN2A, p53. loss of MTAP may dramatically alter the natural history of disease

Questions

