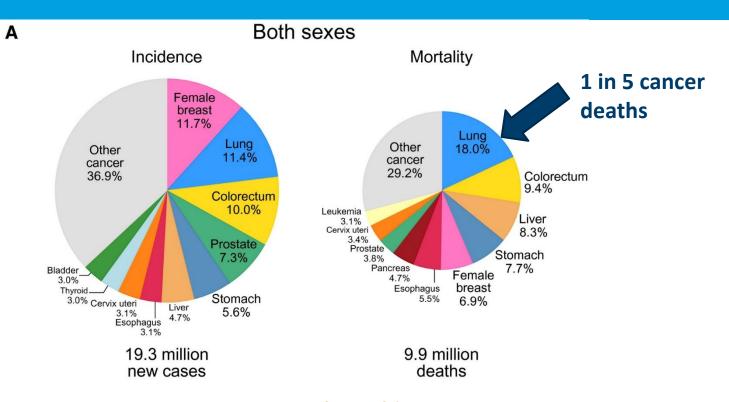


LUNG CANCER EARLY DETECTION: HOW DO WE HELP MORE PEOPLE?

AMY C. MOORE, PHD VP, GLOBAL ENGAGEMENT & PATIENT PARTNERSHIPS

January 21, 2023

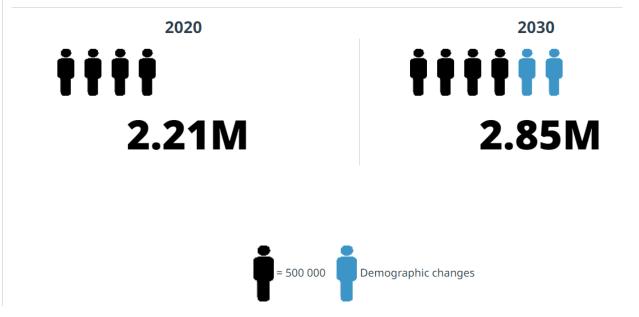

© LUNGevity Foundation. All rights reserved.

CONFIDENTIAL

AGENDA

- General LC stats
- LDCT screening
- IPN management
- Biomarker discovery
- Patient story
- LUNGevity's early detection work

GLOBAL EPIDEMIOLOGY OF CANCER



From: Global Cancer Statistics 2020; Sung et al, 2021 - https://doi.org/10.3322/caac.21660

ESTIMATED NEW LUNG CANCER CASES (2030)

Estimated number of new cases from 2020 to 2030, Both sexes, age [0-85+] 🖻 🚺

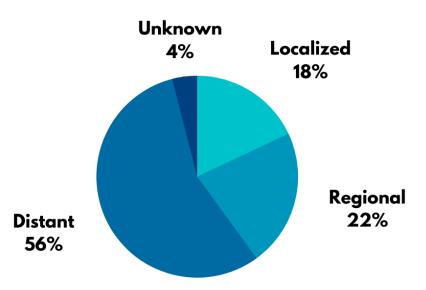
Trachea, bronchus and lung Africa + Latin America and Caribbean + Northern America + Europe + Oceania + Asia

From: Global Cancer Observatory, https://gco.iarc.fr/

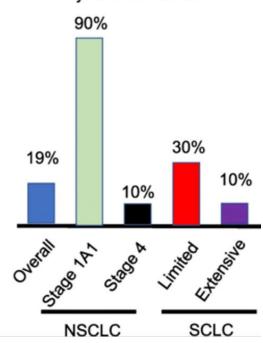
ESTIMATED NEW LUNG CANCER DEATHS (2030)

Estimated number of deaths from 2020 to 2030, Both sexes, age [0-85+]

Trachea, bronchus and lung Africa + Latin America and Caribbean + Northern America + Europe + Oceania + Asia



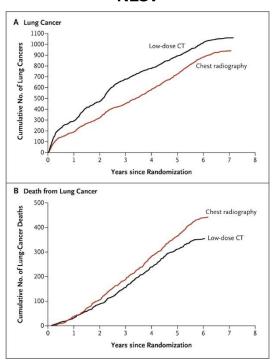
From: Global Cancer Observatory, https://gco.iarc.fr/


MOST LUNG CANCERS DIAGNOSED AT LATE STAGES

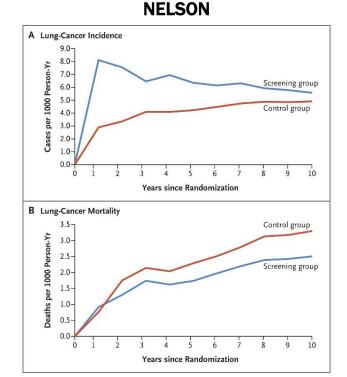
Percent of Lung Cancer Cases by Stage at Diagnosis

https://prevention.cancer.gov/sites/default/files/uploads/news_and_event/cpsb-percent-lung-cancer-cases-stage.png

5-YEAR LUNG CANCER SURVIVAL BY STAGE



5-year survival rate


Li et al. Molecular Cancer (2021) 20:22 https://doi.org/10.1186/s12943-021-01312-y

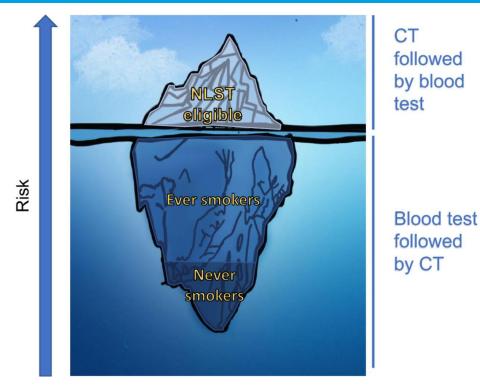
LDCT SCREENING REDUCES LUNG CANCER DEATHS

NLST

N Engl J Med 2011; 365:395-409

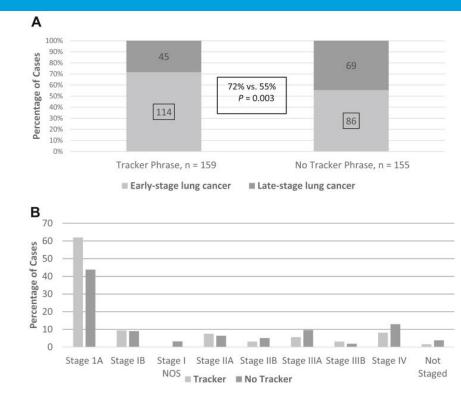
N Engl J Med 2020; 382:503-513

LDCT SCREENING BENEFIT


Female v Male Ratio (%)		Percent LC Mortality Decrease						
		Trial	Men	Women	50:50 M/F			
NLST	41/59	NLST	8%	27%	18%			
NELSON	16/84	NELSON	26%	39-61%	33 – 44%			

https://www.sciencedirect.com/science/article/pii/S2059702920301277

LDCT IMPLEMENTATION CHALLENGES


- Only 5 10% uptake in US
- Role of stigma
- Disparities in screening
- USPSTF criteria still miss many
- Screening programs not implemented globally

LDCT SCREENING - THE TIP OF THE ICEBERG

Ostrin EJ, et al Cancer Epidemiol Biomarkers Prev (2020) 29 (12): 2411–2415.

IPN PROGRAM HELPS STAGE SHIFT DISEASE

Carr LL et al. JTO Clin Res Rep. 2022 Mar; 3(3): 100297

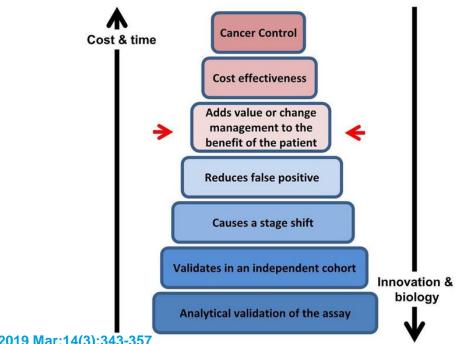
IPN PROGRAM IN MEDICARE POPULATION

Patient	t. Disea	se. Trea	atmen	t Char	acteristic	s and O	utcom	es	
		10.1			MDC				
Variable	LDCT	ILNP	MDC	P-value	Treatment		<0	0001	
Number of patients	157/5659 (2.7%)	772/15461 (5%)	1112/1779		Surgery Alone	50 (32) 222 (29			
Age, median (Q1-Q3)	65 (60 -70)	64 (15-73)	66 (58 - 73)	<0.0001	Surgery (+ Other Modalities)	21(14) //(10)	168 (15)		
Female sex, n (%)	2792 (49)	8641 (56)	917 (52)	< 0.0001					
Race, n (%)				< 0.0001					
White	4552 (80)	10,154 (66)	1192 (67)		5-year OS (95% CI)	LDCT	ILNP	MDC	D
Black or African American	1033 (18)	4471 (29)	544 (31)	>	Aggregate	70 (57, 85)	55 (50, 61)	45 (41, 49)	<0.0001
					Stage I/II	80 (66, 98)	69 (63, 76)	61 (55, 68)	0.0043
Clinical stage, n (%)				< 0.0001	Stage III	68 (46, 100)	36 (27, 48)	42 (35, 51)	0.13
1/11	92 (59)	409 (53)	418 (38)	>	Stage IV	45 (27, 74)	31 (22, 45)	24 (18, 31)	0.23
	25 (16)	130 (17)	272 (24)		Adjusted Hazard Ratio	(95% CI)*		Ref	
الا Tumor size mm, m (Q1 – Q3)	30 (19) 20 (13 - 33)	140 (18) 25 (16 - 41)	303 (27) 35 (22 - 55)	<0.0001	Aggregate	0.44 (0.28, 0.70)	0.80 (0.63, 1.00)	1 ()	<0.0001
	20 (13 - 33)	25 (10-41)	35 (22 - 35)	0.0001	Stage I	0.24 (0.08, 0.69)	0.50 (0.30, 0.85)	1 ()	0.0009
					Stage II	0.56 (0.12, 2.67)	0.94 (0.44, 2.02)	1()	0.4
Eligibility for LDCT lung cancer	screening, n (%)	January .	12100000		Stage III	0.55 (0.19 , 1.53)	1.02 (0.64, 1.65)	1()	0.01
USPSTF 2013 crit	reria	ILNP 314 (41)	MDC 453 (41)		Stage IV	0.57 (0.27, 1.10)	0.94 (0.64, 1.37)	1 ()	0.1
USPSTF 2021 crit		365 (47)	571 (51))	*Adjusted for age, race, in	surance, smoking statu	s, Charlson comorbidi	ty score, histolog	ry, stage

Osarogiagbon et al. MA 10.02: LDCT v ILNP v MDC. 09/12/21

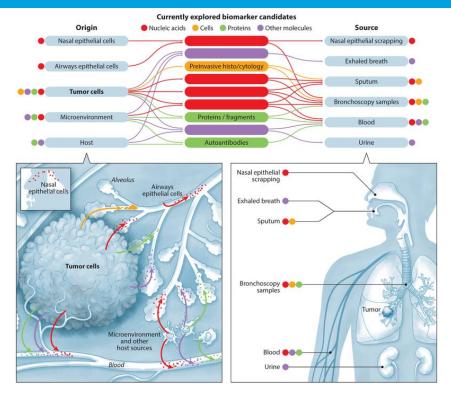
https://www.ilcn.org/ongoing-research-looks-at-optimizing-lung-cancer-screening-programs/

BIOMARKERS FOR IPN STRATIFICATION


The incidentally detected IPN population: roughly 1.2 million per year Clinical risk model Low probability: Intermediate risk pulmonary nodules: PET or biopsy High probability: follow up surgical resection Combined biomarker model Rule in Rule out

> Lower rate of unnecessary biopsy/thoracotomy/PET

Kammer MN and PP Massion . J Thorac Dis 2020 Jun;12(6):3317-3330


BIOMARKERS TO IMPROVE EARLY DETECTION

Criteria for clinical use of biomarkers

Seijo LM et al J Thorac Oncol 2019 Mar;14(3):343-357

BIOMARKERS/SOURCES UNDER INVESTIGATION

Seijo LM et al J Thorac Oncol 2019 Mar;14(3):343-357

© LUNGevity Foundation. All rights reserved

CAN LIQUID BIOPSY REPLACE LDCT?

- Much research underway to identify/validate biomarkers
- While MCEDs show promise, more work needed
- Liquid biopsies may complement, but not replace, early detection
 - Risk stratification for LDCT
 - Clinical decision making for IPN
- Liquid biopsy may be employed if patient refuses LDCT or if screening is not feasible

PATIENT STORY – TERRI ANN DIJULIO

- IPN found in ER, age 42, watched for 2 years, Dx with LC age 44
- Tobacco history, not enough to meet screening criteria
- NED 11 years then Dx with 2nd LC
- NED 5 years, 3rd Dx 18 months ago
- F/U critical
- Unexpected consequences: stroke 5 years ago, concurrent with 2nd Dx
- Family story
- >65 scans in 17 years
- Important that doctor knows who you are and your goals
- Journey into activism

PATIENT STORY – TERRI ANN DIJULIO

"Early detection has gifted me with time to chase my dreams and live an extraordinary life." – Terri Ann DiJulio

CONFIDENTIAL

HOW DO WE DETECT MORE LUNG CANCER EARLY?

- Coordinated efforts among stakeholders (researchers, physicians, regulators, payors, patient advocacy groups) to expand LDCT uptake
- Implementation of nodule management programs to ensure follow-up
- Sustained investment in biomarker discovery and clinical validation

LUNGEVITY – PATIENT DRIVEN ORGANIZATION

About people diagnosed with lung cancer and **For** people diagnosed with lung cancer

© LUNGevity Foundation. All rights reserved.

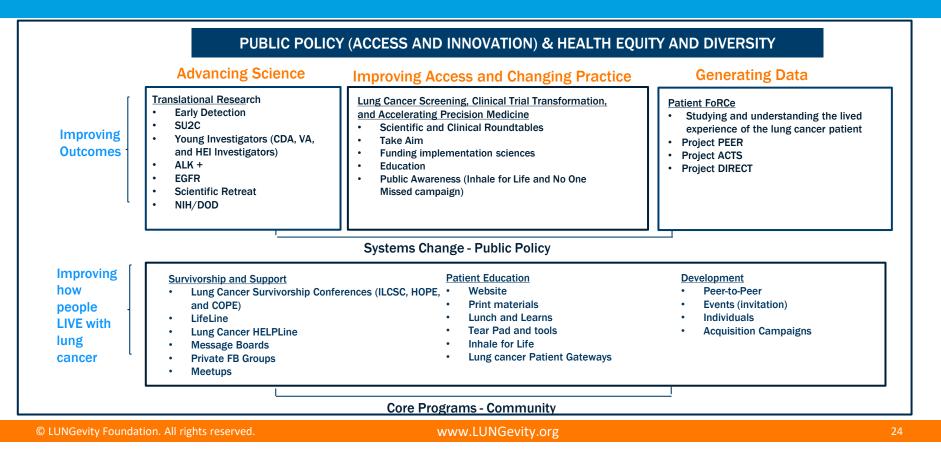
www.LUNGevity.org

LUNGevity Foundation is firmly committed to making an immediate impact on increasing quality of life and survivorship of people with lung cancer by accelerating research into early detection and more effective treatments, as well as by providing community, support, and education for all those affected by the disease.

Our vision is a world where no one dies of lung cancer

TODAY, WE ARE FOCUSED ON TWO GOALS:

Improve outcomes for people diagnosed with lung cancer


HOPE HOPE

Improve how people live with lung cancer

www.LUNGevity.org

HOW DO WE ACHIEVE OUR GOALS?

A patient-centered approach to lung cancer screening adherence

Cancer Center

Developing a patient-centric and clinician-vetted toolkit to promote lung cancer screening adherence

Phase 1

<u>Aim 1</u>:

Identify barriers and facilitators to screening adherence

Develop LCS toolkit components to reduce barriers and enhance facilitators

Phase 2

<u>Aim 2</u>: Conduct usability testing with targeted and tailored LCS toolkit

Phase 3 (Ongoing)

<u>Aim 3</u>: Examine feasibility and acceptability of LCS toolkit

Summary of Phase I Research

- 15 screening center staff (directors and clinic coordinators) and 8 participants interviewed and surveyed
- Domains of questioning focused on:
 - > Strengths and weaknesses of overall screening program
 - Perception and elements of program success (and experience)
 - > Opportunities for improvement (including training opportunities)
 - Examples of Facilitator and Barriers

Facilitators of adherence

- Personalized delivery of screening results
- Multiple methods of communication
- Flexibility in scan timings

Barriers to adherence

- Passive scheduling reminder system
- Poor facility signage
- Too few locations to have scans performed

Addressing barriers to adherence: Incorporating voices from the community

Phase 2 - Usability testing of toolkit

- 12 screen-eligible participants (uninsured, AA, women, rural, health literacy level)
- 12 screening center staff members (community vs. academic, rural vs. urban, decentralized vs. centralized)

FINANCIAL NAVIGATION

Include clear information on how to pay for follow-up scans

HEALTH LITERACY

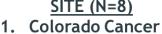
Conduct a health literacy check of all participant-facing communication and materials

Include info on parking fees, public transit routes, landmarks, weekend or evening hours

PRACTICE SETTING

Develop intervention that can be integrated into practice needs

SMOKING CESSATION


Include smoking cessation in non-stigmatizing language

Information on guideline-driven scan results, communication preferences

Phase 3 (Ongoing)- Feasibility and Acceptability (two-arm, parallel groups randomized feasibility trial) <u>SITE (N=8)</u>

- Coalition Lung
- Cancer Task Force
- 2. Kentucky LEADS
- 3. Moffitt (LATTE)

Participant Demographics

- <u>(N = 25 at each site)</u>
- . Low SES
- 2. Rural/urban
- 3. REM
- 4. Health literacy

R

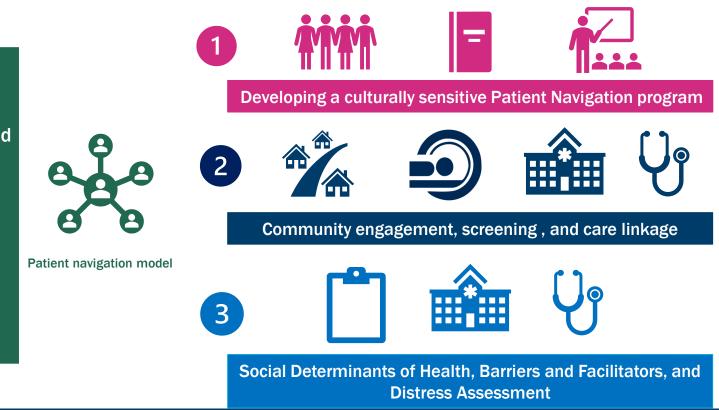
EHR data

Screening center staff

Stakeholder surveys and interviews

PROJECTS TO INCREASE UPTAKE OF LCS

Project URBANA (peer navigation model):


Increasing Access to L<u>Ung Cancer ScReening in the Bronx in LAtinx and AfricaN American Communities</u>

Project ASCENT (patient navigation model):

Understanding barriers to lung C<u>Ancer Screening in the LaTinx/HISPANIC</u> community in an urban setting (Miami dade county)

USING A <u>PATIENT</u> OR A <u>PEER</u> NAVIGATION PROGRAM TO INCREASE ACCESS TO LCS

Development and implementation of a culturally sensitive, geographically tailored, and patient centric LCS education program, coupled with comprehensive navigation will increase uptake and adherence to LCS in underserved communities in the Bronx and in the Miami Dade country area

www.LUNGevity.org

LUNGEVITY PARTNERS WITH ALA AND SU2C

LUNGevity partnered with American Lung Association and SU2C in 2017 to form a Dream Team focused on lung cancer early detection and interception

LUNGevity Announces Funding Opportunity for First-Ever Lung Cancer Early Detection and Interception Dream Team

Call for ideas for SU2C-LUNGevity-American Lung Association collaboration

FOR IMMEDIATE RELEASE

Media Contact Linda Wenger <u>lwenger@lungevity.org</u> (973) 449-3214

WASHINGTON, DC (February 6, 2017) – Building on the Foundation's more than seven years of strategic investment in early detection research, LUNGevity Foundation, in collaboration with Stand Up To Cancer (SU2C) and the American Lung Association (through its LUNG FORCE initiative), is pleased to announce that the American Association for Cancer Research (AACR), SU2C's scientific partner, has issued a Call for Ideas for research proposals that focus on lung cancer early detection and interception: catching precancerous cells and blocking them from turning into cancer cells. The interdisciplinary and multi-institutional SU2C-LUNGevity-American Lung Association Lung Cancer Interception Dream Team will be the first of its kind, with up to \$7 million in funding support.

© LUNGevity Foundation. All rights reserved.

CONFIDENTIAL

EARLY DETECTION AND INTERCEPTION

Dr. Steve Dubinett, L Dr. Avrum Spira, R

SU2C-LUNGevity Foundation-American Lung Association Lung Cancer Interception Dream Team: Intercept Lung Cancer Through Immune, Imaging, & Molecular Evaluation (InTIME)

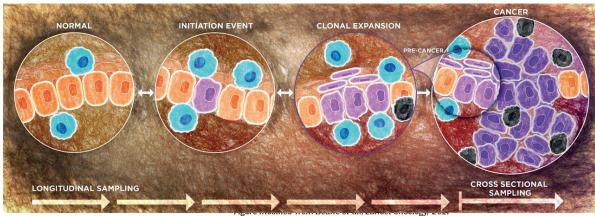
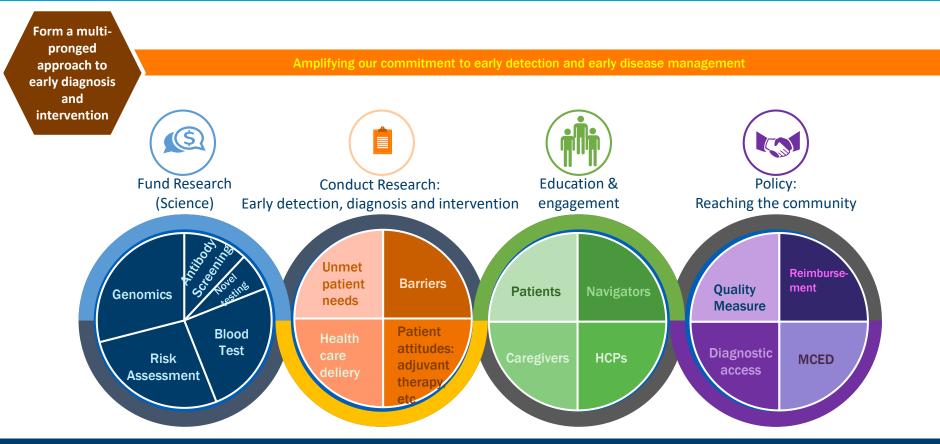



Figure from: Campbell et al, Cancer Prev Res (Phila) . 2016 Feb;9(2):119-24. doi: 10.1158/1940-6207.CAPR-16-0024.

PIERRE MASSION YOUNG INVESTIGATOR AWARD FOR EARLY DETECTION RESEARCH

EARLY LUNG CANCER CENTER

© LUNGevity Foundation. All rights reserved.

LUNGEVITY TEAM

Andrea Ferris President and CEO aeferris@lungevity.org Dr. Amy Moore Vice President of Global Engagement and Patient Partnerships <u>amoore@lungevity.org</u> Dr. Upal Basu Roy Executive Director of Research ubasuroy@luUpangevity.org

