Going Beyond the Standard of Care: Translation of Personalized Medicine into the Clinical Oncology Setting

Christine M. Walko, PharmD, BCOP, FCCP Personalized Medicine Specialist DeBartolo Family Personalized Medicine Institute Moffitt Cancer Center

Objectives

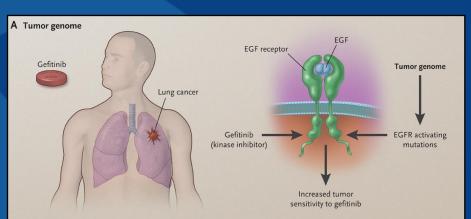
- Discuss the current role of somatic genetic testing in clinical practice
- Explain the purpose and value of a molecular tumor board in terms of treatment recommendations
- Identify future challenges to the implementation of genetic-guided therapy into standard oncology clinical practice

Guidelines are backward looking

With cancer, things change too rapidly for doctors to be able to rely on yesterday's guidelines for long.

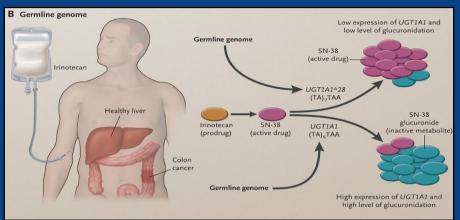
Vincent T. DeVita, Jr, MD The Death of Cancer

Tumor vs. Patient Genome


Tumor Genome

Acquired genetic variation

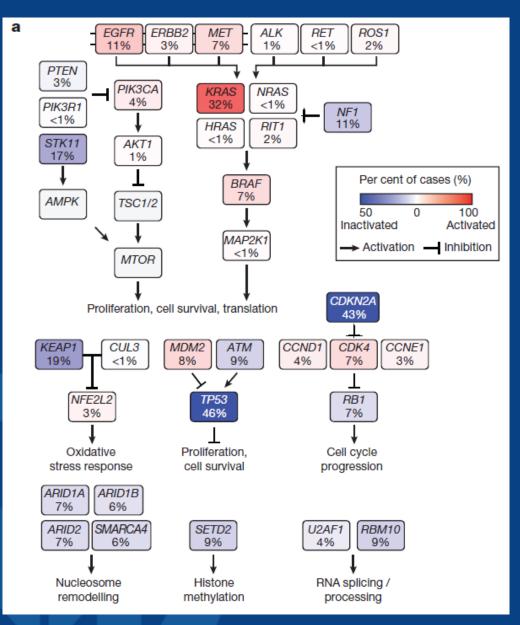
- Predicts tumor response
 - HER2: trastuzumab

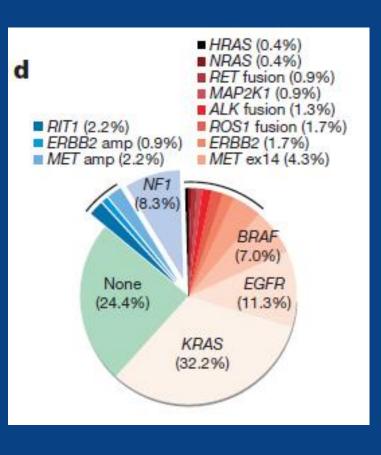

 \bullet

- BCR-ABL: imatinib
- BRAF V600E: vemurafenib
- ALK+: crizotinib

Patient Genome

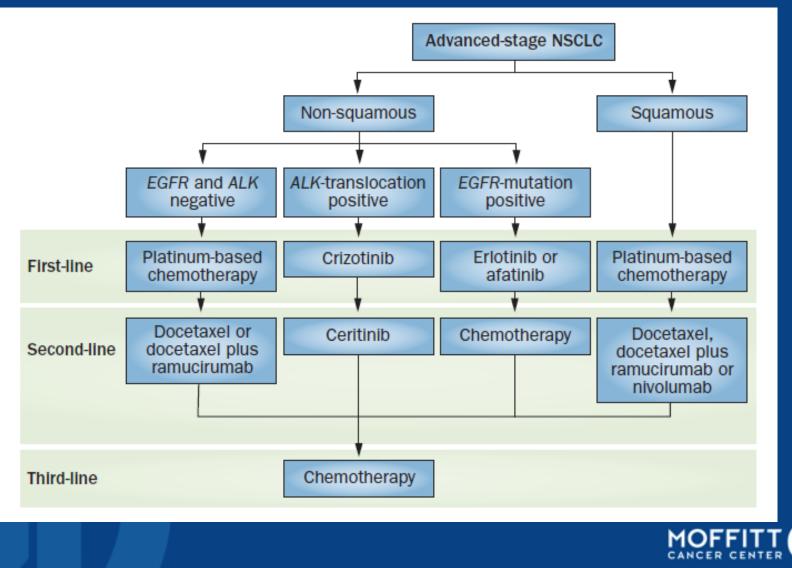
- Inherited genetic variation
- Predicts drug exposure
 - Enzymes
 - Transporters
- Predicts toxicity
 Drug targets

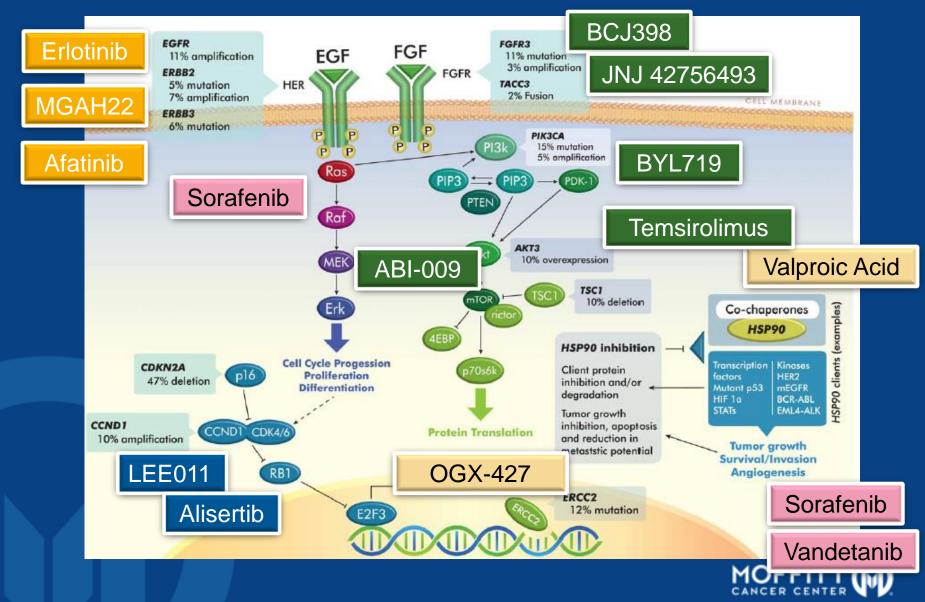

Wang L et al. N Engl J Med 2011;364:1144-1153.


Targeting the Tumor Genome

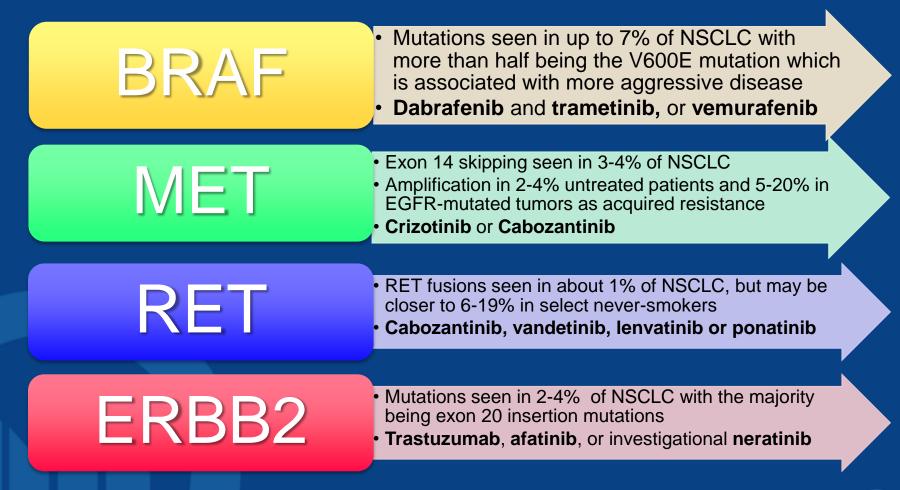
- Genetic alterations in molecular pathways are involved in tumor development, survival, and progression/metastases
- We have the technology! We can profile it!
- Targeted anticancer drugs are available commercially or in clinical trials

Genetic Alterations in Lung Cancer




The Cancer Genome Atlas Research Network. Nature. 2014;511:543-549.

Current Treatment for NSCLC


Nat Rev Clin Oncol. 2015;12:511-526

Targeted Therapy Options

Balar AV and Milowsky MI. Cancer. 2014; ahead of print.

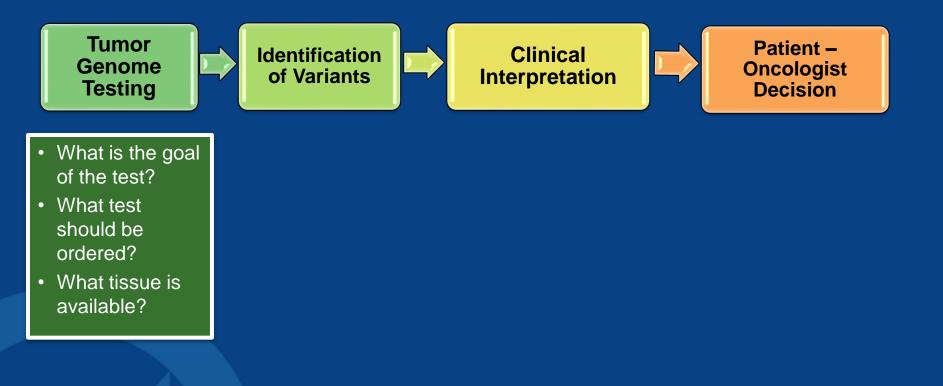
Targeting Therapy in Lung Cancer

Nat. Rev. Clin Oncol. 2015;12:523

Goal of Precision Medicine

- Determine the optimal treatment or sequence of treatments for a patient

 Which therapy will yield the best response?
 How do we optimize the response?
 - How do we minimize toxicity?



In which patients do we typically do tumor genetic testing?

- Prognostic questions
 - Hematology, especially CLL, AML, and MDS
- Predictive questions
 - Patients with standard of care targeted therapy
 - EGFR in metastatic NSCLC at diagnosis
 - Patients in whom there may not be standard of care options
 - Sarcoma, merkel cell, or cancer of unknown primary
 - Patients with advanced disease who may have limited options
 - Clinical trial enrollment
 - Basket trials

Tumor Genome Analysis Workflow

Somatic Test Comparison

Test	Genes Analyzed	Tissue Analyzed	Comments
Foundation One®	315 genes and introns of 28 genes involved in rearrangements	Tumor tissue	 Reports mutation burden (per MB) and MSI status
Foundation One [®] Heme	406 genes (DNA), selected introns of 31 genes to assess rearrangements and 265 genes (RNA) to detect additional fusions	Tumor Tissue (may be blood or bone marrow for heme malignancies)	 Reports mutation burden (per MB) and MSI status Used for sarcomas and other malignancies where a fusion may be expected
Genoptix [®] NexCourse Complete	236 genes including select copy number alterations and rearrangements	Tumor Tissue (may be blood or bone marrow for heme malignancies)	 Does not include BCR- ABL
Foundation One [®] ACT	Complete exons of 27 genes, introns of 6 genes involved in rearrangements and select exons of 34 genes	Blood for cell free DNA analysis	 Correlation between volume of disease and concordance with cell- free DNA
Guardant360 [®]	73 cancer related genes including6 select rearrangements	Blood for cell free DNA analysis	 Correlation between volume of disease and concordance with cell- free DNA

Moffitt in-house

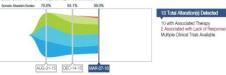
MOFFI)	Patholo	y Services - Moffitt Cancer Cente Phone: 1-813-745-180 Website: moffitt.or
PATIENT INFORMATION				
Name:			Accession Number:	
Date of Birth:			MR#:	
Gender:		22	Ordering Physician:	
Disease:		Neoplasm of pleura	,	
Specimen Type:		Tissue specimen	Date Accessioned:	05/06/2015
Internal Related Case Number:			Date Collected:	05/04/2015
Percent Tumor Cell Nucle Areas:	i in the Selected	40	Date Received:	05/06/2015
Indication:		adenocarcinoma, poorly	differentiated	
		Review Status Fin	al	
TEST PERFORMED				
		ted next-generation sequer d. See under Test Details fo		is sample of
RESULT SUMMARY				
Variants Detected	FDA Approv Indication, o patient's tur	ed Therapies, Prognost r Other Course of Actio tor type)	c FDA Approv n (in Indication, o another turn	red Therapies, Prognostic or Other Course of Action (in ior type)
BRAF p.V600E	1		×	

<u>Genoptix®</u>

		NexCourse	Complete*		
CLINICAL DATA 80-year-old female. S	Specimen				
fL, MCH 31.1 pg, MCH lymphocytes 17%, mc	report, dated 6/24/15, i C 31.1 g/dL, RDW 52.6 f nocytes 13%, eosinophi locytosis and tear drop	L, platelets 78 K/uL ils 1%, basophils 0%	with a differential co	ount of neutrophils 60	0%, band 2%,
Tumor Type	Unknown	Stage	Unknown	Specimen Site	Peripheral Blood
Results Summary					
	6 Genomic Al	terations Identifi	ed		
	(ii) 4 Genomic	Alterations with	Diagnostic and/or	r Prognostic Implic	ations
	R 0 Therape	utic Options Rec	commended in the	NCCN Guidelines	
	A				
	R 2 Therape	utic Options Ava	ilable for Conside	ration	
	🕟 0 Therapeu	tic Options with	Potential Lack of	Response	
	(IN) 13 Potential C	linical Trials			
	Ĭ				

FoundationOne® / Heme / ACT

PATIENT RESULT	ſS	TUMOR TYPE: LUNG AD	ENOCARCINOMA
3 genomic alteration	s	Genomic Alterations Ide	entified [†]
1 therapy associated	d with potential clinical benefit	ROS1 EZR-ROS1 fusio TP53 G245A SETD2 L358fs*4	n
0 therapies associat	ed with lack of response		ant Genes with No Reportable
4 clinical trials		Alterations Detected ALK KRAS EGFR ¹ For a complete list of the genes *See Appendix for details	assayed, please refer to the Appendix
THERAPEUTIC IN	IPLICATIONS		
Genomic Alterations Detected	FDA Approved Therapies (in patient's tumor type)	FDA Approved Therapies (in another tumor type)	Potential Clinical Trials
ROS1 EZR-ROS1 fusion	Crizotinib	None	Yes, see clinical trials section
TP53 G245A	None	None	Yes, see clinical trials section
SETD2	None	None	None


Note: Genomic atterations detected may be associated with activity of certain FDA approved drugs: however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

Guardant360®

L358fs*4

Find Guidant260 Tunce Response Map Bustrates her relative charges of observed cIDNA at different sample submission time points. The "Somatic Attention Bunden below refers to the maximum % cIDNA detected at each time point. Amplifications are not plotted and only the first and last four test dates are plotted. Rease see the physician portal for the Tumor Response Map with all test dates.

Summary of Alterations & Associated Treatment Options The protecting, or elek treams, of when de Head (H) (H) southing in block is related to the unique tunno taking of the potent. Taktors that may effect the source promoting of the block growth alterations in causing of the UA+1 block triads that a protect, tantors, taktor thereing effect and the source takes the term of the term of the source takes the term of term

Atteration		Mutation Trend	% c/DNA	cfDNA Amplification	FDA Approved in Indication	Available for Use in Other Indications	Clinical Drug Trials
	Exon 19 Deletion	5	59.0		Afatinib, Erlotinib, Geffinib	None	Trials Available
EGFR	1790M	100 B	37.3		Osimentinib Lack of Response: Eriotinib, Gettinib	Alatinio	Triats Available
curn	C7975		27.5		Eriotinib Lack of Response: Osimertinib	Atatinib, Goffinib	Triale Available
	АМР	••• • • • • • • • • • • • • • • • • •		***	None	Atatinib, Cetuximab, Eriotinib, Gettinib, Nectumumab	Trials Available

Moffitt in-house

CLINICALLY RELEVANT RESULTS FDA Approved Therapies, Prognostic FDA Approved Therapies, Prognostic Indication, or Other Course of Action (in Indication, or Other Course of Action (in patient's tumor type another tumor type) Interpretation: A BRAF p.V600E mutation was detected with an allele frequency of 46%. This activating mutation is seen in around 8% of colorectal cancer and is associated with poor prognosis (Roth AD et al.; J Clin Oncol 28; 466-74; 2010 Jan 20, Fariña-Sarasqueta A et al.; Ann Oncol 21; 2396-402; 2010 Dec). Similar findings were reported in patients with proximal colon adenocarcinomas or with recurrent colorectal cancer where the presence of mutated BRAF was associated with significantly poor overall survival and disease-free survival (Pai RK et al.; Am J Surg Pathol 36; 744-52; 2012 May: Yokota T et al.; Br J Cancer 104; 856-62; 2011 Mar 1), respectively. However, BRAF p.V600E a recent study found that the combination of BRAF inhibitor (PLX4720) and EGFR inhibitors (cetuximab, gefitinib or erlotinib) produced pronounced response both in vitro and in vivo system (Prahallad A et al.; Nature 483; 100-3; 2012 Jan 26). Findings by another preclinical study suggest that administering vemurafenib in combination with standard-of-care or novel targeted therapies may lead to enhanced and sustained clinical antitumor efficacy in CRCs harboring the BRAF(V600E) mutation (Yang H et al.; Cancer Res 72; 779-89; 2012 Feb 1). Therefore, this variant may be actionable under certain clinical scenarios and under certain treatment regimens. OTHER RESULTS

Other variants: See "All Identified Variants Detailed Information" section.

A non-synonymous single nucleotide variant was detected in MET, resulting in a predicted p.T992I protein change. This variant is described in the SNP database at a minor allele frequency of 1.2% (rs491913684). However, it has also been identified as a somatic change three times in lung cancer and four times in thyroid cancer. A recent study has shown that with concomitant KRAS_PIK3CA_MET_ and non-sensitizing EGFR mutations, it is possible to detect up to 96.0% of patients with non-small-cell lung cancer that do not to respond to

Genoptix[®]

	nterpretation: Key Genor	nic Alterations		
Gene	Genomic Alteration	Mutation Effect	Allele Frequency	Pathogenic

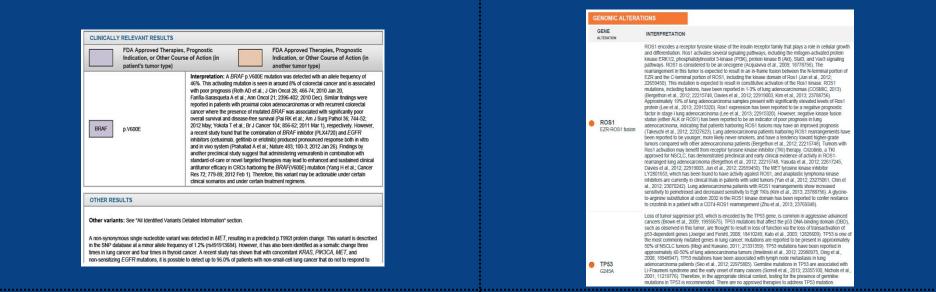
Variant Assessment

A genomic alteration in the ATM gene is detected (c.7757A>G; p.N2586S). This missense alteration has been previously reported (http://www.ncbi.nlm.nih.gov/clinvar/variation/133633/). However, based on the available evidence its clinical significance is uncertain

Interpretation

The effect of this aberration on ATM protein function is not known. Common aberrations in ATM are inactivating mutations

Clinical Summary:


Blomarker overview: The dominant class of aberrations in ATM are inactivating mutations. ATM is commonly mutated in colorectal cancers, cervical cancers, bladder cancers, and lymphoid neoplasms (COSMIC). ATM is one of the causal genes underlying the rare, recessive disorder, ataxialanglectasia, which is characterized by progressive cerebellar ataxia, neuro-degeneration, radiosensitivity, cell-cycle checkpoint defects, genome instability, and a predisposition to cancer (PMID:20580718). The inactivation of both alleles of the ATM gene by deletion (as part of the common Initiation and deletion) and deleterious point mutation is a halimark of mantie cell lymphoma (MCL), indicating that ATM plays a key role in the initiation and/or progression of MCL (PMID:10706620). ATM mutations may be one of the key events in the pathogenesis of T-cell prolymphocytic leukemia (T-PLL). The NCCN guidelines suggest that detection of ATM mutations could be useful in certain circumstances in the diagnosis of T-cell prolymphocytic leukemia (NCCN guidelines, Non-Hodgkin's Lymphomas, version 2.2015, pages TPLL-land MS-275). Additionally, it is commended in the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian, that patients with ATM mutations receive RI screening as they have a >20% risk of breast concer (NCC Guidelines, Genetic/Familia High-Risk Assessment: Breast and Ovarian, version 1.2015, page ADDIT-2). The presence of del(11q) in CLL patients is associated with short progression-free survival to chemotherapy and rapy approaches and is therefore considered an unfavorable prognostic indicator (NCCN guidelines, Non-Hodgkin's Lymphomas, version 2.2015, page CSLL-A).

Clinical data: There are no clinical data to indicate N25865 in Chronic Myelomonocytic Leukemia is predictive of therapeutic response.

Pre-clinical data: There are no pre-clinical data to indicate N2586S in Chronic Myelomonocytic Leukemia is predictive of therapeutic response.

eraneutic Implications' None

Guardant360[®]

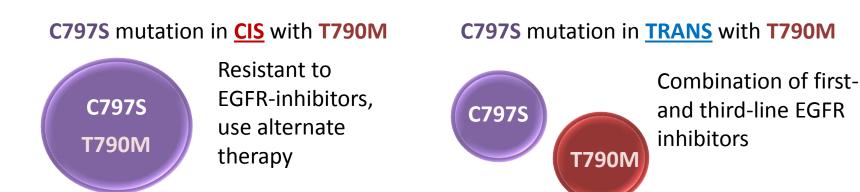
Clinical Relevance of Detected Alterations

Alteration	Role in Disease	Effect on Drug Sensitivity	Effect on Drug Resistance
<i>60</i> 7	The presence of an LGPH abcomula impactor any reliable, or overspression can much in an oversburghton or sensettiky of Egressi, which can take to essense profileration ¹ . The EGPH 1750M mulational provide the encoder Egre inhibito existing any sense and any sense of the encoder of the encoder of the encoder Egre inhibito existing and the encoder Egre inhibitor existing and the encoder Egre inhibitor existing and the encoder Encoder the encoder encoder Encoder encoder Encoder encoder Encoder encoder and the encoder encoder and the encoder and the encoder encoder and the encoder and	The presence of a sensitivity EGPR mutation of sensitivity to an EgR tyraine kinese hitker (TRL Compared with moveling and programs and the sensitivity of an EgR tyraine kinese hitker (TRL tyraines) and the sensitivity of the tyraines of EgR TBL extends that and any comparison of the sensitivity of the the tyraines of EGR tyraines and the sensitivity of the tyraines of EgR TBL extends that and any comparison of the tyraines of the tyraines of tyraines and the tyraines of the tyraines of tyraines and the tyraines of the tyraines of the tyraines of the tyraines of the tyraines of tyraines and the tyraines of the tyraines and the tyraines of the tyraines and the tyraines and tyraines. The tyraines of tyraines and tyraines are the tyraines and tyraines. The tyraines are tyraines and tyraines and tyraines are the tyraines and tyraines and tyraines and tyraines. The tyraines are the tyraines and tyraines and tyraines and tyraines and tyraines and tyraines and tyraines and tyraines and tyraines	Some packets with EGPR-nuture NG2.C enabler instatution of Egit initiation: resistance has been associated with issustrian is IGSPR, and anytilication of the generative in IGSPR, and anytilication of the generative initiation of the generative initiation of the second second second second second second NSCLC of Invest the three of SSLC with neuronclocities that the second second second neuronclocities that the second second second neuronclocities that the second second second neuronclocities and the second second with generation of the second second with generation of the SSLC of Ill neuron of Second in resistance to gettingb ⁽⁴⁾ .

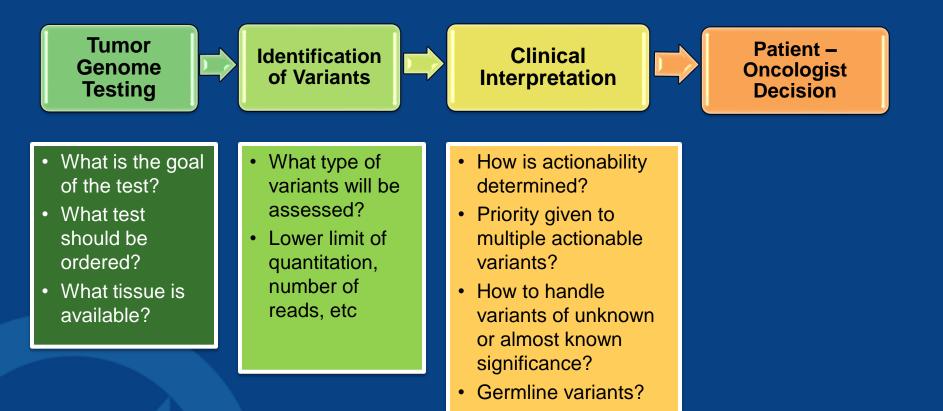
Cell Free DNA (cfDNA) Assays

- Tissue biopsies are not always feasible
- Enables serial monitoring over time to assess for resistance mutations and changes in frequency
- May better represent tumor heterogeneity
- Value of cell free DNA (cfDNA) and serial sampling
 - Plasma derived assays
 - Best concordance when higher number of metastatic sites, lower albumin, higher number of prior therapies
 - Site of disease also showed correlation
 - Cerebral Spinal Fluid (CSF)
 - Somatic alterations found in 63% of CNS metastases from solid tumors and 50% of primary brain tumors

J Clin Oncol. 2016;34:online 5/9/2016, Clin Cancer Res. 2016;22:2960-8


Mutation Landscape Changes over Time

 40 yo non-smoking female diagnosed with Stage IV NSCLC, adenocarcinoma


EGFR exon		_		
4/2015 Started	EGFR T790 9/2015:	EGFR C797S		
erlotinib	D/C erlotinib	12/2015 :	KRAS A146V and D119	
	Started osimertinib	D/C osimertinib Started carboplatin/	3/2016 : High mutation burden, PDL1 positive	
		pemetrexed/ bevacizumab	Started Pembrolizumab	FITT

EGFR C797S and Resistance

- We are familiar with resistance mutations:
 - Erlotinib \rightarrow T790M
 - − Osimertinib → C797S → Retains activity to first generation agents
- EGFR C797S acquired resistance mutation
 - Covalent binding site for 2nd and 3rd generation EGFR-inhibitors like afatinib and osimertinib

Tumor Genome Analysis Workflow

Clinical Actionability

- Genetic alteration predicts response to a particular therapy
 - Benefit or resistance to a particular therapy
 - FDA approved therapy in the patient's tumor or another type of tumor
 - Clinical trial for the particular alteration or reasonable based on molecular biology
- Genetic alteration provides diagnostic or prognostic information
- Clinically relevant germline alteration that informs disease risk or pharmacokinetic or pharmacodynamics

Actionability and Levels of Evidence

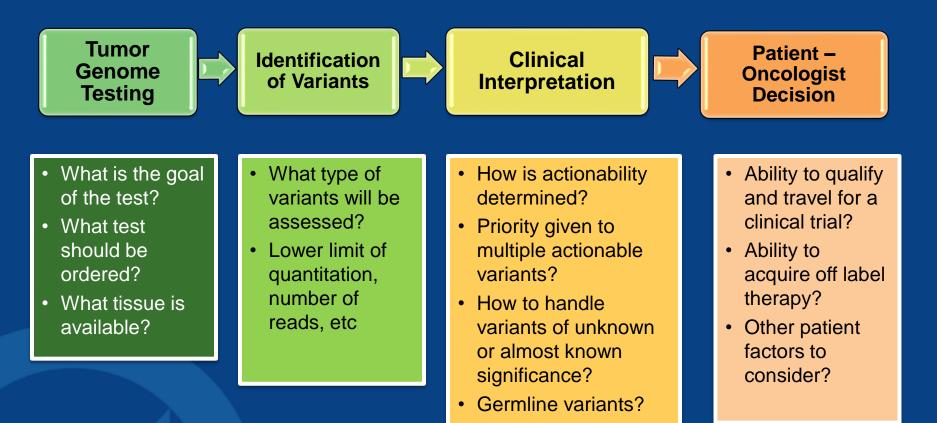
Supporting Data

- Comparative trial with biomarker selection/stratification (patient's tumor type or different tumor type)
- Retrospective cohort or casecontrol trials
- Biomarker association with response less robust (secondary endpoint)
- Case study or case series
- Preclinical data only (in vitro or in vivo models)

Clinical Actionability

- FDA approved therapy in patient's tumor type
- FDA approved therapy in **different** tumor type
- Clinical trial based on specific mutation
- Clinical trial based on application of pathway biology
- Prognostic information
- Not clinically actionable at this time

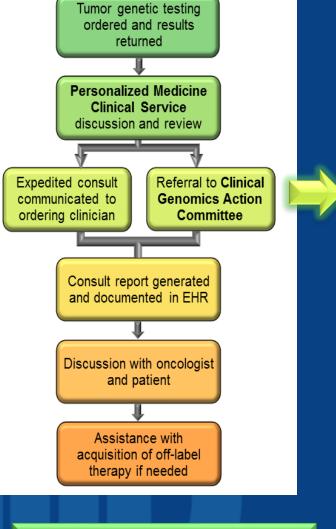
Variants of Almost Known Significance


- Variation found in clinically significant gene in area of known tyrosine kinase binding or other known relevant area
 - Specific alteration itself is unknown
 - Example: EGFR N771Y
 - Located in the EGFR tyrosine kinase domain in exon 20 but has not been previously reported in COSMIC or other sources

8. Mutation in Functional Domain			
Recep_L_domain Furin-like	Receptor L domain GF_recep_IV	Protein tyrosine kinase	
1 24 57 168	338 361 481 505	837 885 712 771	968 10011024045 1210
		Protein Kinase Dom	nain

- Value of functional based assays
- Importance of data sharing, especially regarding relevant clinical outcomes

Tumor Genome Analysis Workflow

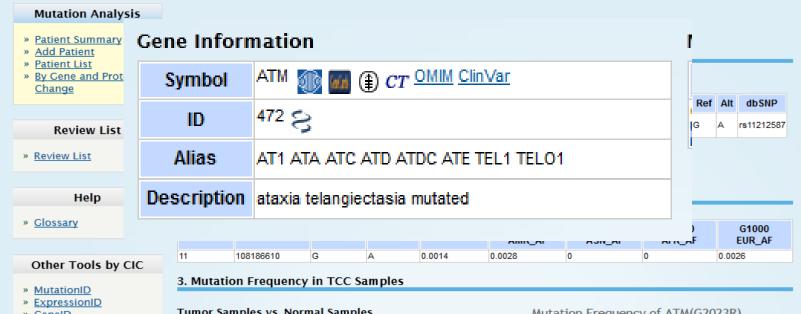


Translating Recommendations into Clinical Decision Making

- Researching and presenting available data to facilitate the decision making process
- Considering the interaction of all the mutations together
 - Cyclin D pathway alteration + RB1 loss
- Consideration of each patient's unique characteristics
 - Desire for a clinical trial and ability to travel
 - Availability and ability to qualify for a clinical trial
 - Sequencing of treatment options
 - Insurance coverage and ability to afford off label therapy
 - Patient preference on treatment options
 - Where patient is in his/her treatment course

Personalized Medicine Clinical Service (PMCS) and Clinical Genomics Action Committee (CGAC)

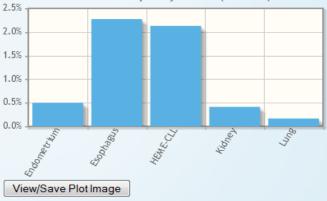
Tumor Genome Analysis Workflow


Clinical Genomics Action Committee (CGAC)

CGAC Clinical Database

Mutation Analysis	List of F	indings for	patient	(Foundatio	nOne H	eme)			
» <u>Patient Summary</u> » <u>Add Patient</u> » <u>Patient List</u>								Rows: 11 /	11 save to ts
» <u>By Gene and Protein</u> <u>Change</u>	Gene 🗢	Location 🔻	Mutation \$	Significant 🗢	CNA 🗢	MAF \$	In EVS 🗢	Protein Domain	Actions
Reports	EP300	22q13.2	R695P	NO			No		🖉 🗙 <u>Detail</u>
Report by Gene	TP53	17p13.1	R337C	YES			No	P53_tetramer	🖉 🗙 <u>Detail</u>
» <u>Report by Cancer</u> <u>Type</u>	NUP93	16q13	A72V	NO			No		🖉 🗙 <u>Detail</u>
» Patient-Mutation	RB1	13q14.2	L331fs*1	YES			No		🖉 🗙 _{Detail}
<u>Report</u>	HDAC7	12q13.1	R166H	NO			Yes		🖉 🗙 Detail
Review List	LRRK2	12q12	Q923H	YES			Yes		🖉 🗙 Detail
Review List	KRAS	12p12.1	C180*	NO			Yes		🖉 🗙 Detail
» <u>Review List</u>	CUX1	7q22.1	S1134C	NO			No		Detail
	MAP3K1	5q11.2	A19S	NO			No		C X Detail
Help	NOTCH2	1p13-p11	P6fs*27	YES			No	EGF	Detail
» <u>Glossary</u>	TMSL3		Т23М	NO			No		Detail
Other Tools by CIC	Add Ge	ne and Muta	tion						
 <u>MutationID</u> <u>ExpressionID</u> <u>GeneID</u> 	Mutatio	Gene: n (Change):							
		Significant:	VEC ¥						
		CNA:	123 .						

CGAC Database



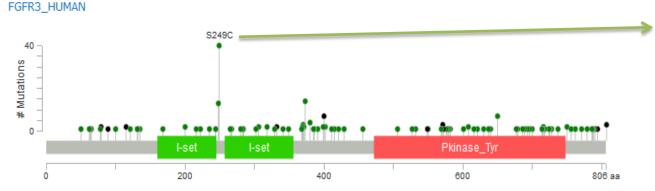
» GenelD

Tumor Samples vs. Normal Samples

Tumor	Tumor Samples (%)			Normal Samples (%)		
0.18%		C	.84%			
Across Different Tissue Types Search Table:						
Tissue¢	Proteit	Sample with 4 Mutation	Sample			
Endometrium	G2023R	1	200	0.5		
Esophagus	G2023R	1	44	2.27273		
HEME-CLL	G2023R	2	94	2.12766		
Kidney	G2023R	1	243	0.41152		
Lung	G2023R	1	603	0.16584		

Clinically Important Genetic Resources

Category	Resource	Utility
Variants of Unknown Significance	1000 Genomes Project (<u>http://www.1000genomes.org/</u>) Exome Variant Server	Provide a probability of the variant being germline Provide a probability of the
	(http://evs.gs.washington.edu/EVS/)	variant being germline
	International Agency for Research on Cancer (IARC) (<u>http://p53.iarc.fr/</u>)	Frequency of a TP53 mutation in germline and tumor samples
Inherited Cancer Risk	HCI Breast Cancer Gene Prior Probabilities (<u>http://priors.hci.utah.edu/PRIORS</u>)	Data on all possible single nucleotide substitutions in BRCA1/2
	ClinVar (<u>http://www.ncbi.nlm.nih.gov/clinvar/</u>)	Association of a variant with an inherited disease
	American College for Clinical Genetics (ACMG)	Association of a variant with an inherited disease


Knepper, T, et al. The Oncologist. 2016: in press

Clinically Important Genetic Resources

Category	Resource	Utility	
Variants from across Cancer Types	cBioPortal (<u>http://www.cbioportal.org/</u>)	The frequency of a variant across cancer types and the location of the variant in the functional domains of the gene	
	Catalogue of Somatic Mutations in Cancer (COSMIC) (<u>http://cancer.sanger.ac.uk/cosmic</u>)	The frequency of a variant across cancer types	
	MyCancerGenome (http://www.mycancergenome.org/)	Association of mutation with tumorigenesis, related therapeutic implications and available clinical trials	
Therapeutic Association	PharmGKB (<u>https://www.pharmgkb.org/</u>)	Interactive tool for researchers investigating how genetic variation effects drug response	
	Personalized Cancer Therapy Knowledge Base for Precision Oncology (<u>https://pct.mdanderson.org</u>)	Knowledge base resource for the implementation of personalized cancer therapy and integrating information about tumor DNA, RNA, protein and metabolomics profiles with predicted therapy response	
Knepper, T, et al. The Oncologist. 2016: in press			

CRCA Patient with FGFR3 S249C

FGFR3:

- In vitro bladder cancer cell data supports this mutation induced phosphorylation of PLCg1, FRS2 and ERK1/2. Differences were seen between different FGFR3 mutations and different cell types
- Pazopanib was shown in vitro to inhibit FGFR3 activating mutations at an IC50 of 100nM-1uM and one SqCC head and neck cancer patient with an FGFR2 P253R mutation had a response to pazopanib
- 67 yo woman with metastatic papillary urothelial carcinoma s/p several chemotherapy agents found to have FGFR3 amp and S249C (58%), treated with pazopanib and had a PR > 6 months.
- AZD4547 is part of the NCI-MATCH trial expanded arms
 - Subprotocol W (FGFR1-3 amplifications, mutations or translocations)

40 mutations AA Change: S249C

Cancer Type	Count ▼ ▼
Bladder Urothelial Carcinoma	36
Lung Squamous Cell Carcinoma	2
Head and Neck Squamous Cell Carcinoma	1
Papillary Renal Cell Carcinoma	1

cBioPortal July 2016, Oncogene 2009;28:4306-16 European Urology. 2015;68:167-170

Germline Challenges

- If tumor is analyzed with matched normal tissue, can subtract out alterations found in the normal tissue
 - If normal tissue not analyzed, more difficult to separate
 - Allele frequency of 50% or 100% may indicate germline alterations in some assays
- Available databases
 - Exome variant server
 - ClinVar
- ACMG recommendations regarding incidental findings for suspected germline mutations in tumor tissue

Mutation Load and Immunotherapy

• Exciting therapy, but not everyone has a response

- Durable responses to anti-PD1 therapy were seen in:
 - 31-44% of melanoma
 - 19-20% of lung cancer
 - 22-25% of renal cell carcinoma
- Potential biomarkers:
 - Density of CD8+ T cells in tumors
 - Expression of PDL1 on tumors
 - Mutation burden and microsatellite instability: now being reported by some molecular testing companies for individual patients

Example: MSI: Stable Mutation Burden: **High**, 25 mutations per megabase

Nat Rev Cancer. 2016;16:275-287

Mutation Load and Immunotherapy

Number of Mutations

- Improved overall survival with CTLA4-inhibitors in melanoma patients with > 100 mutations (p=0.04)
 - 64 patients treated with ipiliumumab or tremelimumab
 - Neoantigen response signature developed
- Improved mPFS in lung cancer patients treated with pembrolizumab with high mutation burden
 - Patients with durable responses had a median of 302 mutations vs. 148 in those without a durable response (p=0.02)

Microsatellite Instability

- 41 patients with MMR-deficient colorectal cancer, 9 patients with other MMR-deficient cancer and 21 MMR-intact colorectal cancer patients
 - All treated with pembrolizumab
- Whole exome sequencing mean number of somatic mutations per tumor
 - MMR-deficient: 1782 mutations
 - MMR-intact: 73 mutations
 - Higher somatic tumor burden = improved mPFS

N Eng J Med. 2015;372:2509-20

Future of Somatic Genomics

- What are the optimal mutational profiling approaches?
- How do we translate these findings into clinical practice for the average oncologist?
 - Defining "clinically actionable"
 - Handling "variants of unknown significance"
 - Facilitating patient discussions
 - Ethics on germline findings
- What clinical trials should we be doing?
 Novel trial design like "Basket Studies"

J Clin Oncol. 2013;31:1806-1814.

Ongoing Challenges UNITIES

- Identify, interrogate and validate the correct biomarkers for targeted and immunotherapies
- Utilize novel clinical trial designs to assess outcomes across tumor types and mutations
 - Basket trials
 - Genetic-guided Registry trials
 - Targeted Agent and Profiling Utilization Registry (TAPUR)
 - Goal: To learn from the real world practice of prescribing targeted therapies to patients with advanced cancer whose tumor harbors a genomic variant known to be a drug target or to predict sensitivity to a drug
 - Currently open at 4 sites with many more planned, 15 arms
 - NCT02693535

Optimizing Targeted Therapy

- Translate our understanding of cancer biology crosstalk and feedback signaling into rationale drug combinations
- Modify the immune environment to improve tumor identification and destruction
- Improve biomarker identification and validation to target the right genetic drivers

Acknowledgements

- Personalized Medicine
 Clinical Service
 - Howard McLeod, PharmD
 - J. Kevin Hicks, PharmD, PhD
 - Theresa Boyle, MD
 - Andrew Brohl, MD
 - Nancy Gillis, PharmD
 - Todd Knepper, PharmD
 - Eric Padron, MD
 - Teresa Vo, PharmD

Christine.walko@moffitt.org

Bioinformatics

- Jamie Teer, PhD
- Richard Lu, PhD
- Clinical Genomic Action Committee Members
- Our Patients

