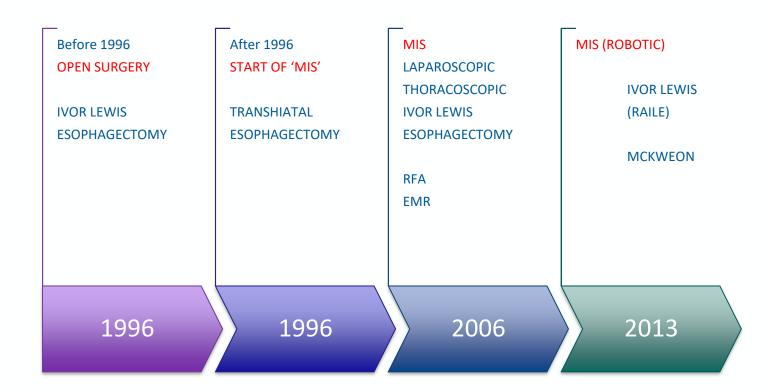
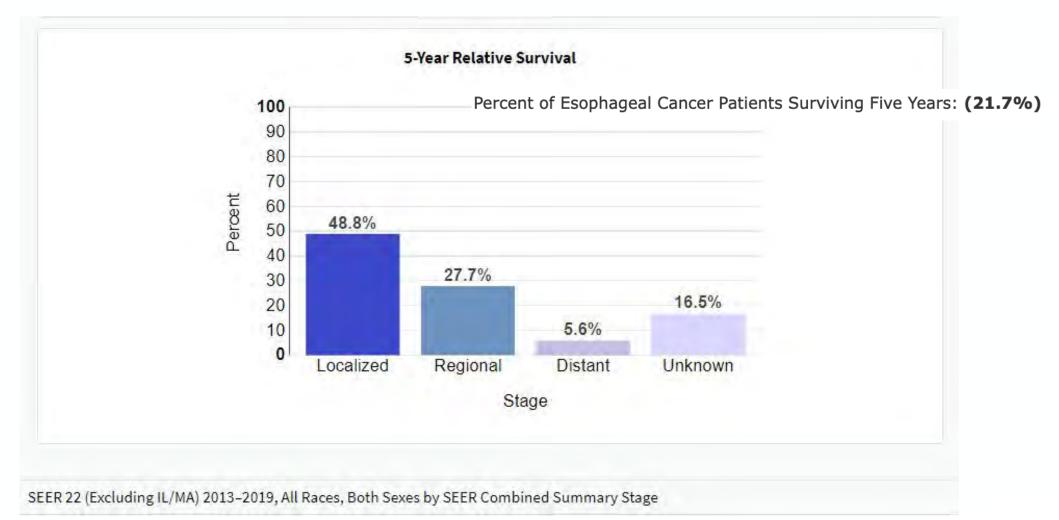
Contemporary Surgical Management of Esophageal Cancer Journey to Minimally Invasive Robotic Esophagectomy

> FLASCO 2025 Clinical Oncology Series February 8th Westin Waterside Tampa


Gary Chmielewski, MD, FACS Medical Director of Robotic Thoracic Surgery AdventHealth Orlando


"there is little doubt that the successful outcome of curative surgery for esophageal carcinoma remains one of the great challenges of surgical practice". "there is little doubt that the successful outcome of curative surgery for esophageal carcinoma remains one of the great challenges of surgical practice".

> Franz Torek 1913

EVOLUTION OF SURGICAL TECHNIQUES in my practice 1996-2021

Esophageal Cancer: 5-Year Relative Survival Rates

Incidence and Mortality of Esophageal Cancer in the United States (1999-2024):

MAY 14, 2012	-	Here to	o stay and	Year	Incidence (Diagnosis)	Mortality (Deaths)
Newswee			•	2024	22,370	16,130
WhenI	MELINDA GATES'S BIRTH-	getting	worse	2023	21,560	16,120
Grow	CONTROL BOMBSHELL			2022	20,640	16,410
Up,I'm	BILL MAHER REMEMBERS JOHNNY CARSON			2021	19,260	15,530
Going to Weigh	THE RAW COURAGE OF	Esoph	ageal CA	2020	18,440	16,170
300 Lbs.	7		2019	17,650	16,080	
Help!				2018	17,290	15,850
75)	6		\sim	2017	16,940	15,690
Rate ratio (relative to 1975)	5		/	2016	16,910	15,690
ative and the second			\sim	2015	16,980	15,590
(rels	4			2014	18,170	15,450
atio	3	/		2013	17,990	15,210
Rate				2012	17,460	15,070
	2	N		2011	15,914	14,44
1000				2010	15,813	14,490
				2009	16,487	13,908
	0 +	1980 1985	1990 1995	2008	16,299	13,714
From: Pohl H, Welch HG. Natl Cancer Ins	t 2005			2007	15,706	13,592

ESOPHAGECTOMY APPROACHES

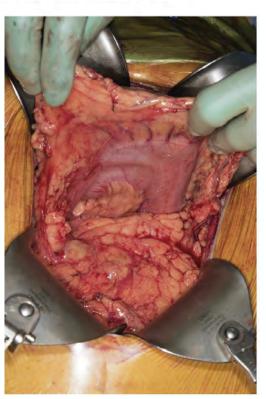
- Thoraco-abdominal
- McKeown (3 Hole)
- Ivor Lewis
- Transhiatal
- Minimally Invasive Esophagectomy
- GOALS:
- Resect all cancer
- Adequate nodal staging
- No anastomotic leak
- Eat and return to daily living
- Tolerate any needed adjuvant therapy

All associated with larger incisions that result in pulmonary compromise Mortality 2-20% Morbidity 25-60% OPEN Longer recovery times

Mortality 0-2% Morbidity 5-20 % MIS

First description 1946 GOLD STANDARD for the next 50 years

OPEN SURGERY: Laparotomy Thoracotomy Intra-thoracic anastomosis

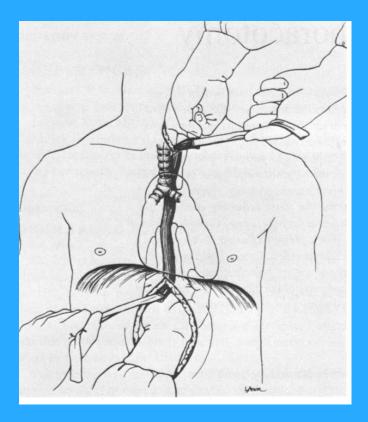

COMPLICATIONS: Mortality 2- 20% MI 1% SVT 13% DVT 19% LEAK 11-20% STRICTURE 5-40% RESP 25-47%

Open Modified En Bloc Ivor Lewis Esophagectomy: How I Teach It

Wayne Hofstetter, MD

Department of Thoracic and Cardiovascular Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas

Ann Thorac Surg 2018;105:1583–8



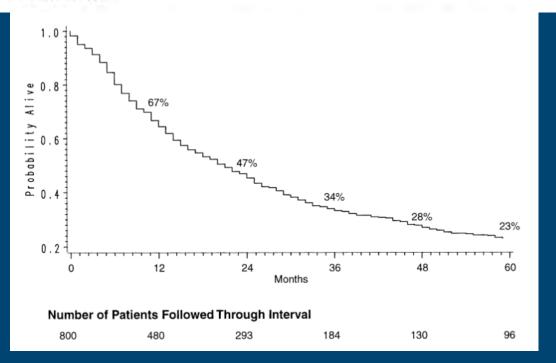
Check for updates

TRANSHIATAL ESOPHAGECTOMY

Denk described in cadavers (1913) Turner (1933) first successful Orringer and Sloan

(1978) 28 patients

Esophagectomy without thoracotomy


Blunt esophagectomy without thoracotomy has been performed in 26 patients: four with benign disease and 22 with carcinomas involving various levels of the esophagus (10 cervicothoracic, one upper third, five middle third, and six distal third). Continuity of the alimentary tract was restored by anastomosing the pharynx or cervical esophagus either to stomach (19 patients) or to a colonic graft (seven patients). Esophageal resection and reconstruction were performed in a single stage in 25 patients, and the esophageal substitute was positioned in the posterior mediastinum in the original esophageal bed in 24 patients. There were no deaths directly related to the technique of blunt esophagectomy. Average intraoperative blood loss was 1,350 ml. for the entire group, 1,650 ml. for those requiring concomitant laryngectomy and 1,050 ml. for those undergoing esophagectomy without laryngectomy. Complications in these patients included pneumothorax (eight), transient hoarseness (five), pleural effusion (five), anastomotic leak (four), subphrenic abscess (one), and cerebrovascular accident (one). The five deaths were due to pneumonia (two), innominate artery rupture (two), and pulmonary embolus (one). Blunt esophagectomy without thoracotomy is safe and is far better tolerated physiologically than the combined transthoracic and abdominal operations more traditionally used for esophageal resection and reconstruction.

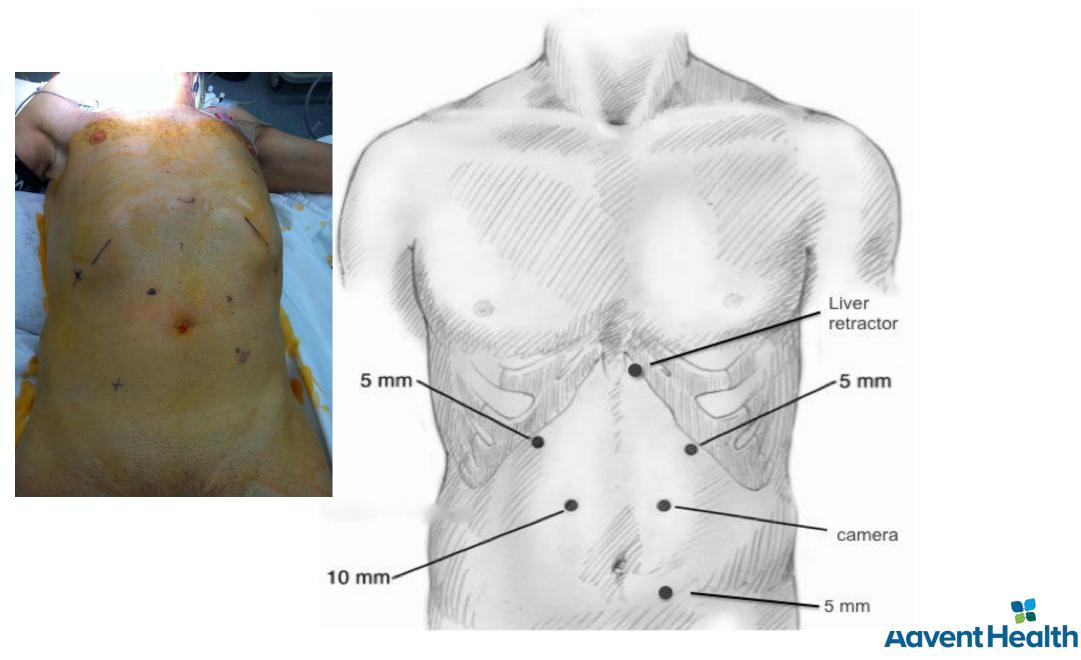
Mark B. Orringer, M.D., and Herbert Sloan, M.D., Ann Arbor, Mich.

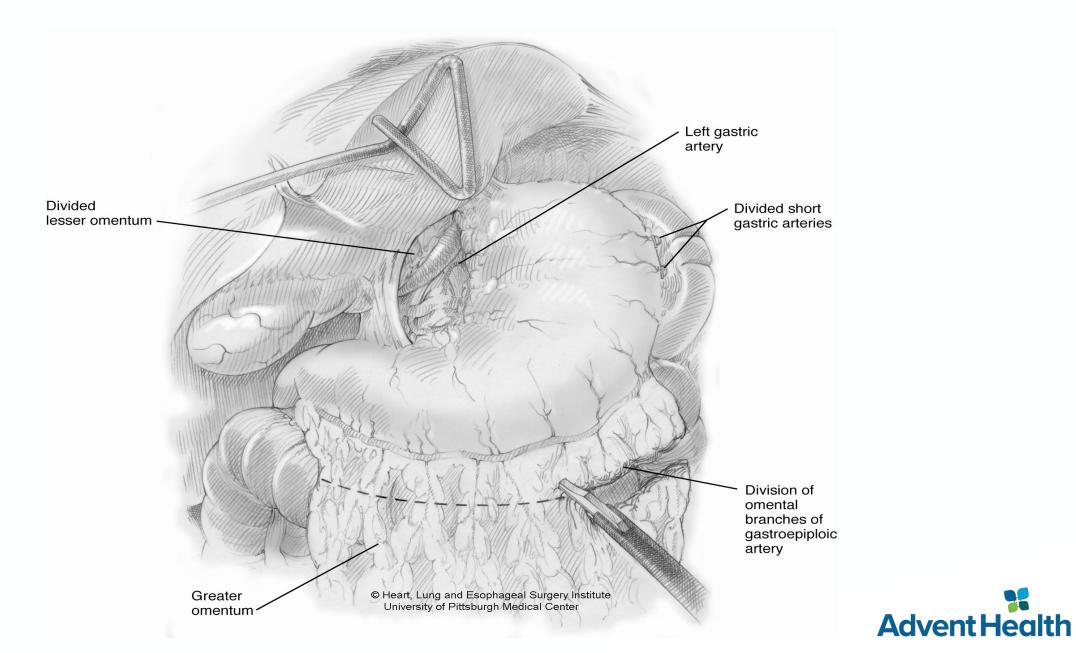
Transhiatal Esophagectomy: Clinical Experience and Refinements

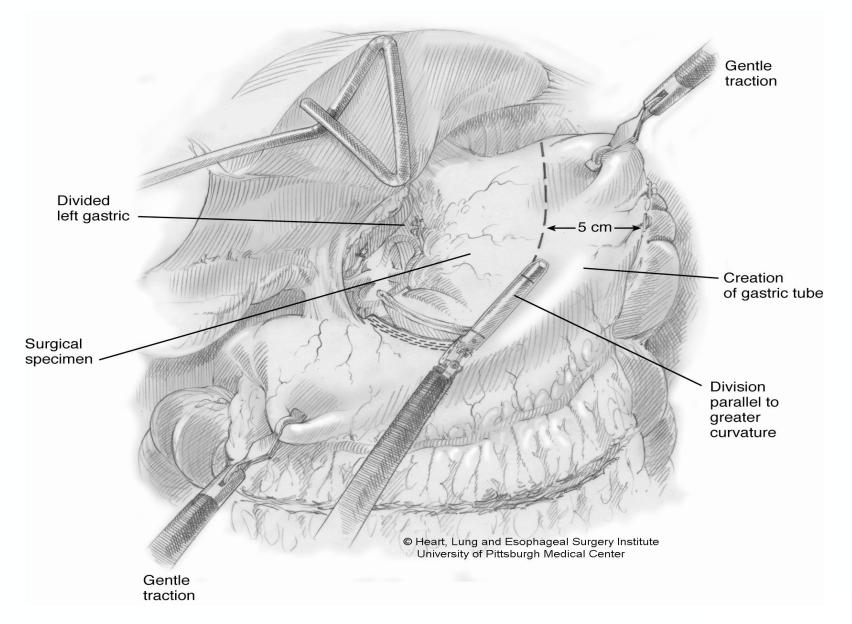
Mark B. Orringer, MD, Becky Marshall, and Mark D. lannettoni, MD

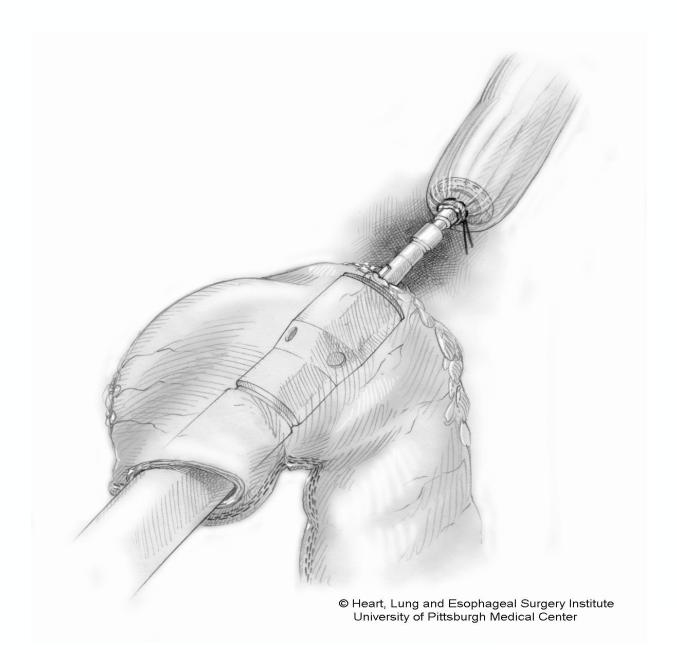
From the Section of General Thoracic Surgery, Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan

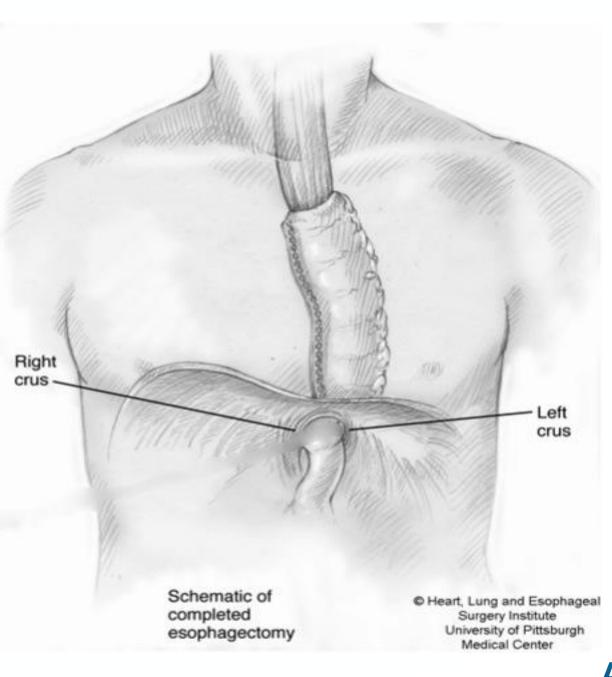
	Number (%			
Benign Conditions		285 (26%)		
Neuromotor dysfunction		93 (33%)		
Achalasia	70	and he and		
Spasm/dysmotilty	22			
Scleroderma	1			
Stricture		75 (26%)		
Gastroesophageal reflux	42	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Caustic ingestion	19			
Radiation	4			
Other	10			
Barrett's mucosa with high-grade dysplasia		54 (19%)		
Recurrent gastroesophageal reflux		21 (7%)		
Recurrent hiatus hernia		14 (5%)		
Acute perforation		14 (5%)		
Acute caustic injury		6		
Other		8		
Carcinoma of Intrathoracic Esophagus		800 (74%)		
Upper third		36 (4.5%)		
Middle third		177 (28.0%)		
Lower third thoracic and/or cardia		587 (73.5%)		


MIS IVOR LEWIS ESOPHAGECTOMY


James Luketich, MD UPMC


Complete Laparoscopic and Thoracoscopic approach


Minimally Invasive Esophagectomy



Minimally invasive esophagectomy in the elderly.

Perry Y. Fernando HC. Buenaventura PO. Christie NA. Luketich JD. J Soc Laparoendoscopic Surgeons. 6(4):299-304, 2002 Oct-Dec.

MIE was Ivor Lewis Type (laparoscopy and thoracoscopy) 41 pts > 75 yo No perioperative deaths Major Morbidity 19% 1 pneumonia, 1 tracheal tear, 1 chylothorax, 1 MI, 3 leaks

VERY FAVORABLE RESULTS

Robotic Platform consists of:

- Patient/Bedside tower
- Power Cart
- Surgeon console

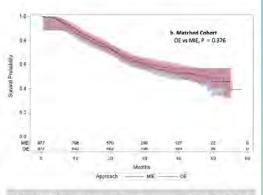
Advantages ROBOTIC ESOPHAGECTOMY

Complete control of the operative field	Better visualization- 3D and high definition	Better lymph node harvest	Easie of gi
Increased dexterity and precision in dissection	Replicate my open 2-layered hybrid anastomosis	Evaluate the conduit vascularity w Firefly	My k ba

Easier dissection of greater curve spleen

My bias 'Quicker back to life'

Minimally Invasive Esophagectomy Provides Equivalent Survival to Open Esophagectomy: An Analysis of the National Cancer Database



Brian Mitzman, MD,* Waseem Lutfi, BS,[†] Chi-Hsiung Wang, PhD,[†] Seth Krantz, MD,[‡] John A. Howington, MD,[§] and Ki-Wan Kim, MD[‡]

The use of minimally invasive esophagectomy (MIE) is increasing despite limited evidence to support its efficacy. We compared overall survival and perioperative mortality for MIE vs open esophagectomy (OE). We gueried the National Cancer Database for all patients having esophagectomy as the primary procedure for primary squamous cell cancer and adenocarcinoma from 2010 through 2012. A propensity score analysis was performed. Postoperative pathology and quality, as well as overall patient survival outcomes, were compared between OE and MIE. The use of MIE increased from 26.9% in 2010 to 36.3% in 2012 (P < 0.001). Of 3032 patients (2050 OE and 982 MIE) who were identified, propensity score matching (1:1) yielded 977 patients in each group. Mean lymph nodes examined were higher in the MIE group (16.3 vs 14.5, P < 0.001). However, final pathologic nodal stage was not significantly different in the matched sample. There was also no difference in pathologic upstaging or margin status between the groups. All other postoperative variables were equivalent, including an average length of stay of 14 days, unplanned readmission rate of 6.5%, and 30-day and 90-day mortality rates of 3% and 7%, respectively. There was no survival difference, with a median survival of 48.7 months for OE and 46.6 months for MIE (Kaplan-Meier analysis, P = 0.376). During the 3-year period analyzed, there were no significant differences in postoperative outcomes and quality metrics between OE and MIE. Although shortterm outcomes are limited in the National Cancer Database, MIE appears to have equivalent oncological outcomes and survival when compared with the open approach.

Semin Thoracic Surg 29:244-253 © 2017 Elsevier Inc. All rights reserved.

Keywords: esophagus, minimally invasive surgery, surgery, thoracoscopic, esophageal cancer, laparoscopic

Kaplan-Meier curve showing overall survival for matched cohort of open esophagectomy vs minimally invasive esophagectomy.

Central Message

Minimally invasive esophagectomy has equivalent oncological outcomes and overall survival when compared with open esophagectomy.

Perspective Statement

Open approaches for resectable esophageal cancer have high morbidity. Minimally invasive techniques have been shown to have similar survival and improved morbidity in many surgical fields, including colorectal and lung cancer. Minimally invasive esophagectomy has equivalent oncological and overall survival outcomes when compared with open esophagectomy, and may be the preferred approach for esophageal cancer.

Hasson et al. Mini-invasive Surg 2020;4:46 | http://dx.doi.org/10.20517/2574-1225.2020.10

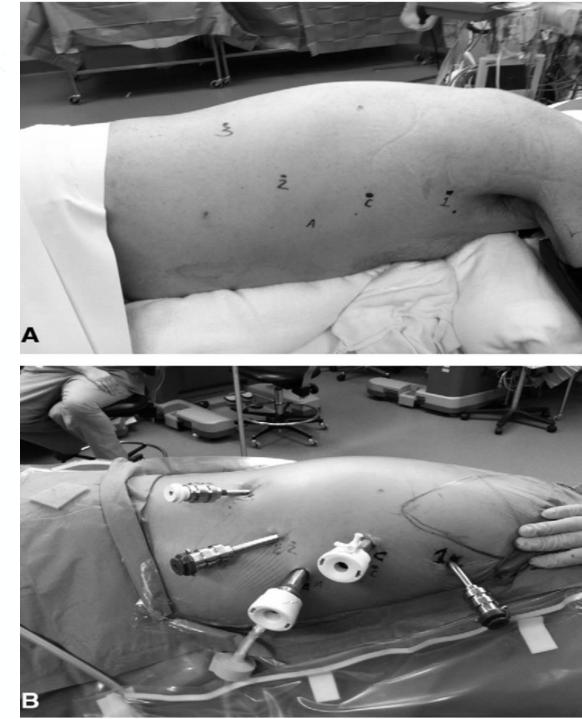
Patient demographics	Robotic esophagectomy, n = 40				
Age, Mean (SD)	63.3 (8.6)				
Male, (%)	36 (90.0)				
Pack years, Mean (SD)	46.5 (38.5)				
Smoking status, (%)					
Current	6 (15.0)				
Former	24 (60.0)				
Never	10 (25.0)				
Alcohol status, (%)					
None	9 (22.5)				
Current use ¹	19 (47.5)				
Prior use ¹	2 (5.0)				
Prior heavy use ²	10 (25.0)				
Induction therapy, (%)	33 (82.5)				
Operative time, mins, Mean (SD)	512.7 (70.2)				
Length of stay, days, Median (range)	9 (5-38)				
Complications ³ , (%)					
Anastomotic Leak ⁴	6 (15.0)				
Pneumonia	4 (10.0)				
Atrial fibrillation ⁵	6 (15.0)				
Chyle leak ⁶	4 (10.0)				
30-day mortality, (%)	0				

Table 4. The DHMC experience

		n	Country	Pathology (%)				Complications (%)						
Author	Year			scc	Adeno	Other	Op time	EBL	HLN	Pneumonia	RN injury	Anast leak	Chyle leak	Mortality ^a
Cerfolio ³⁹	2013	16	USA	19	81	0	367 ^b	60 ^b	18 ^b	0	0	0	0	0
de la Fuente ³⁸	2013	50	USA	6	92	2	445	146	20	10	NA	2.0	4.0	0
Hernand 2 ³⁴	2013	52	USA	6	88	6	442	NA	19	9.6	NA	1.9	3.8	0
Trugeda ³⁷	2014	14	Spain	36	64	0	222 ^b	75 ^b	18 ^b	0	0	7.1	14	0
Hodari ³⁶	2015	54	USA	6	85	9	362	74	16	14	NA	5.5	2.3	1.9
Wee ³⁵	2016	20	USA	10	75	15	455 ^b	275 ^b	23	10	NA	0	10	0
Egberts ³²	2017	75	Germany	0	96	4	392 ^b	172 ^b	29	NA	NA	9.6	NA	3.9
Zhang ³¹	2018	61	China	95	0	5	316	189	19	6.6	8.2	9.8	1.6	0
Meredith ⁴⁰	2018	147	USA	10	86	4	415	158	20	6.8	NA	2.7	3.4	1.4
Pötscher ⁴¹	2019	11	Austria	NA	NA	NA	389 ^b	NA	NA	NA	NA	18	NA	NA
Wang ⁴²	2019	31	China	71	26	3	387	110 ^b	17	3.2	NA	6.5	NA	0
var der Sluis ³³	2020	100	Germany	19	79	2	415	311	29	12	3.0	8.0	4.0	3.0
Average										8.5	4.2	5.6	3.7	1.5 🗐

TABLE 2 Case series of Ivor-Lewis RAMIE

Ann Gastroenterol Surg. 2020;4:608–617



Technical aspects and early results of robotic esophagectomy with chest anastomosis

Robert James Cerfolio, MD, FACS, FCCP,^{a,b} Ayesha S. Bryant, MSPH, MD,^b and Mary T. Hawn, MD, MPH, FACS^e

CHEST PORT SETUP

ANASTOMOTIC TECHNIQUE

Hybrid Orringer anastomosis

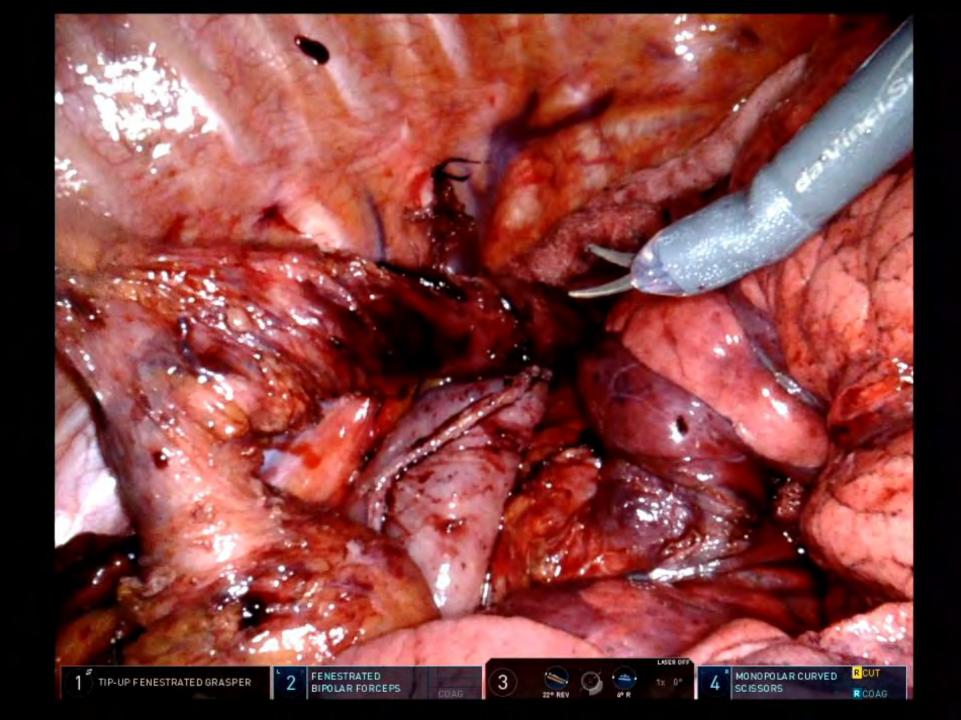
45 mm blue load back wall

2 layer outer wall closure

• 3-0 PDS (Connel stitch) currently switch to 3-0 Stratafix (continuous)

• 3-0 silk Lembert

El Zaeedi, M., Geraci, T. (2024). Esophagectomy: Approaches and Surgical Techniques. In: Ng, T., Geraci, T. (eds) Thoracic Surgery Clerkship. Contemporary Surgical Clerkships. Springer, Cham. https://doi.org/10.1007/978-3-031-44645-0_33


Esophagus

Gastric conduit

FIREFLY USE

Check pulse on gastroepiploic arcade After conduit creation After conduit pull up During revisional surgery

ICG- Indocyanine-green fluorescence imaging

CONCLUSIONS:

- Robotic platform is the preeminent MIS tool to perform esophagectomy for patients with cancer
 Robotic esophagectomy combined with neoadjuvant chemo/ IO treatment has the potential for improved patient survival
 - Patients with esophageal cancer require a team approach
- MIS esophagectomy results in better patient outcomes

Gary Chmielewski, MD, FACS AdventHealth Orlando Medical Director of Robotic Thoracic Surgery Minimally Invasive Thoracic Surgeons Group <u>www.garychmielewski.com</u> M: 248.321.5411. O: 407.821.3550 gary.chmielewski.md@adventhealth.com

