HER2 in colorectal cancer

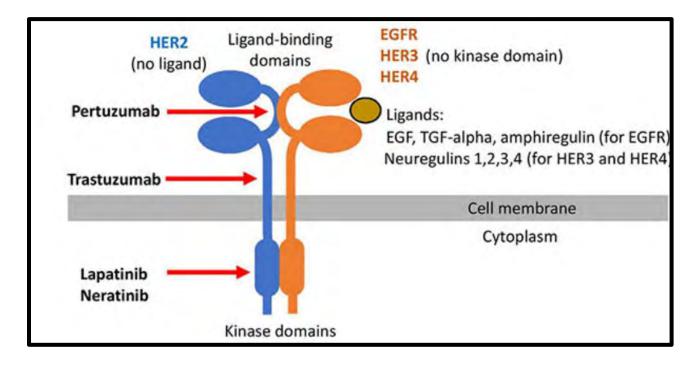
Tiago Biachi MD PhD Associate Professor Moffitt Cancer Center

Morsani College of Medicine at the University of South Florida

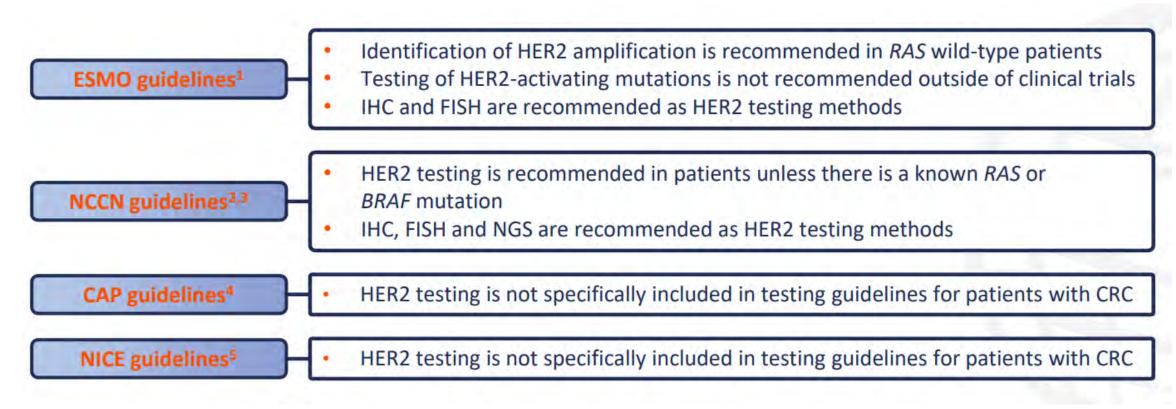
Disclosures

• Speaker's bureau, consulting, advisory role or travel/conference:

- Bristol-Myers Squibb;
- Ipsen
- Merck Sharp & Dohme Corp.;
- AstraZeneca.
- o A2Bio
- Moderna


Background

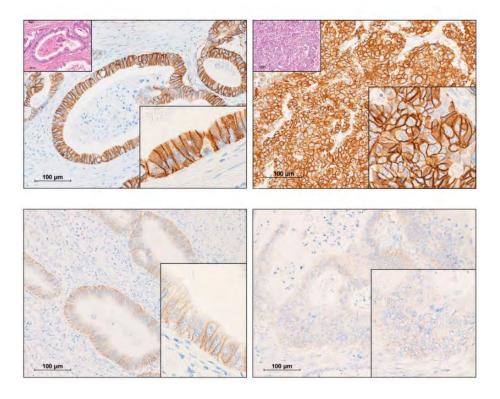
Djaballah SA, et al. Am Soc Clin Oncol Educ Book. 2022;42:1–14.


HER2 in CRC

- ☐ A proto-oncogene (also known as ERBB2), located on chromosome 17q21
- ☐ Encodes for a transmembrane glycoprotein receptor with tyrosine kinase activity
- ☐ Linked to resistance to anti-EGFR therapies
- ☐ HER2 overexpression in 2% of all CRCs
- ☐ In 5–6% of stage IV KRAS wild-type CRCs
- ☐ Higher prevalence in patients with left-sided tumors

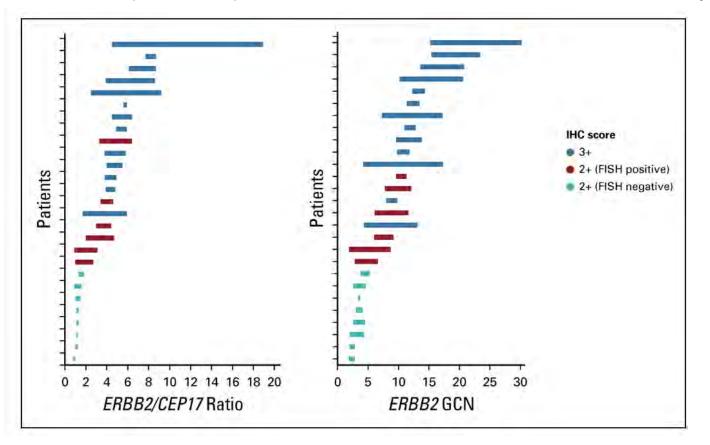
HER2 testing

Guidelines

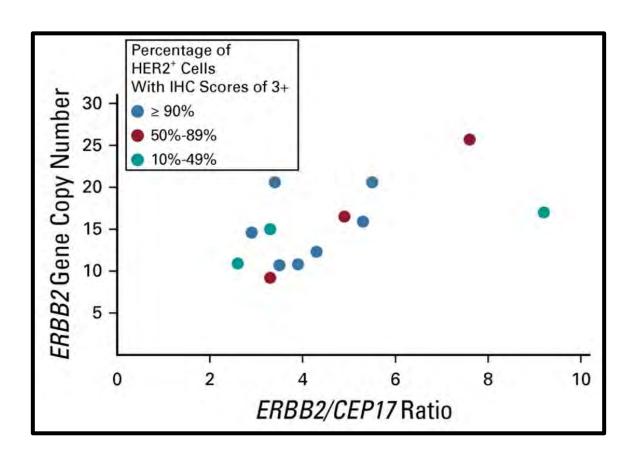


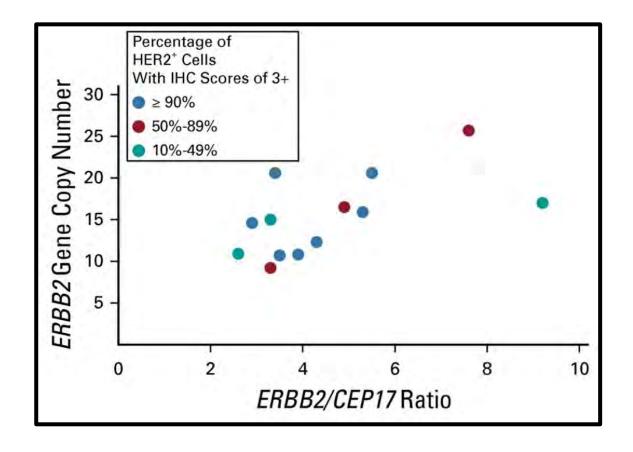
- 1) Cervantes A, et al. Ann Oncol. 2023;34:10–32.
- 2) NCCN. Colon cancer. V2.2024. Available at: www.nccn.org/professionals/physician-gls/pdf/colon.pdf.
- 3) NCCN. Rectal cancer. V2.2024. Available at: www.nccn.org/professionals/physician-gls/pdf/rectal.pdf.
- 4) CAP. 2017. Available at: https://documents.cap.org/documents/colorectal-cancer-recommendations.
- 5) NICE. 2020. Available at: www.nice.org.uk/guidance/ng151/evidence/b1-use-of-molecular-biomarkers-to-guide-systemic-therapy-pdf-7029391215.

HERACLES criteria vs GE criteria


- ☐ In bold are the areas where the interpretation or subsequent testing/clinical consequences differ.
- ☐ Both sets of criteria recognize lateral membrane and basolateral staining as potentially positive staining patterns.

HER2 IHC Result	CAP/ASCP/ASCO Gastroesophageal Adenocarcinoma Guideline Interpretation (for resections)	Consequence	HERACLES Diagnostic Criteria Interpretation	Consequence
No reactivity or membranous reactivity in <10% of tumor cells	Negative (0)	No further testing required; not eligible for therapy	Negative	No further testing required; not eligible for therapy
Faint/barely perceptible reactiv- ity in ≥10% of tumor cells	Negative (1+)	No further testing required; not eligible for therapy	Negative	No further testing required; not eligible for therapy
Weak to moderate complete, basolateral, or lateral mem- branous reactivity in ≥10% but <50% of tumor cells	Equivocal (2+)	Perform ISH testing	Negative	No further testing required; not eligible for therapy
Weak to moderate complete, basolateral, or lateral mem- branous reactivity in ≥ 50% of tumor cells	Equivocal (2+)	Perform ISH testing	Equivocal	Mandatory IHC retesting to con- firm staining in ≥50% of cells; ISH testing required; eligible for therapy if ISH positive
Strong complete, basolateral, or lateral membrane staining in 10–50% of tumor cells	Positive (3+)	Eligible for therapy; no further testing required	Conditionally positive	Mandatory IHC retesting to con- firm staining in ≥10% of cells; ISH testing required; eligible for therapy if ISH positive
Strong complete, basolateral, or lateral membrane staining in >50% of tumor cells	Positive (3+)	Eligible for therapy; no further testing required	Positive	Eligible for therapy; no further test- ing required

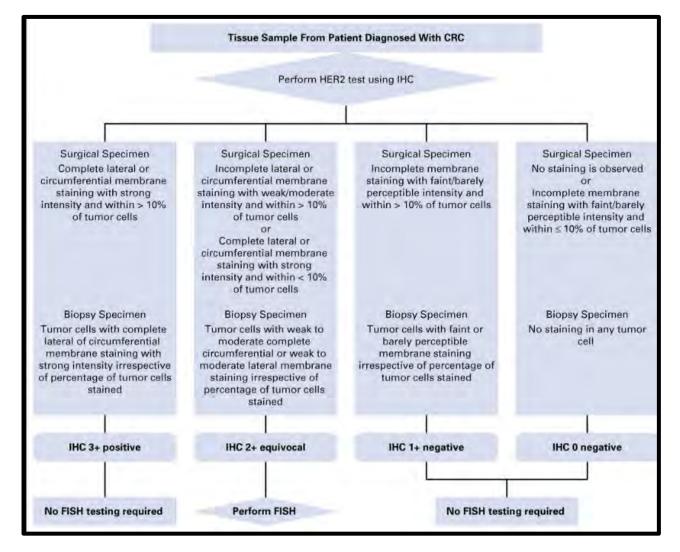

IHC, ISH and NGS correlation


- □ Different trials with different eligibility criteria: HERACLES IHC and FISH, MyPathway IHC, FISH and NGS;
- ☐ Favor surgical samples if possible due to heterogeneous expression;
- \square CNV of \ge 5.0: HER2 positive tumors (IHC/FISH), CNV of 4.0-4.9 needed to be confirmed by IHC/FISH

Fujii S et al. JCO Precis Oncol. 2020 Nov;4:6-19.

IHC, ISH and NGS correlation

IHC, ISH and NGS correlation



ORIGINAL REPORTS | January 07, 2020

International Harmonization of Provisional Diagnostic Criteria for *ERBB2*-Amplified Metastatic Colorectal Cancer Allowing for Screening by Next-Generation Sequencing Panel

Authors: Satoshi Eujii, MD, PhD D., Anthony M. Magliocco, MD, FRCPC, FCAP, Jihun Kim, MD, PhD, Wataru Okamoto, MD, PhD, Jeong Eun Kim, MD, PhD, Kentaro Sawada, MD, PhD, Yoshiaki Nakamura, MD, PhD, ... SHOW ALL ..., and Takayuki Yoshino, MD, PhD AUTHORS INFO & AFFILIATIONS

Publication: JCO Precision Oncology • Volume 4 • https://doi.org/10.1200/PO.19.00154

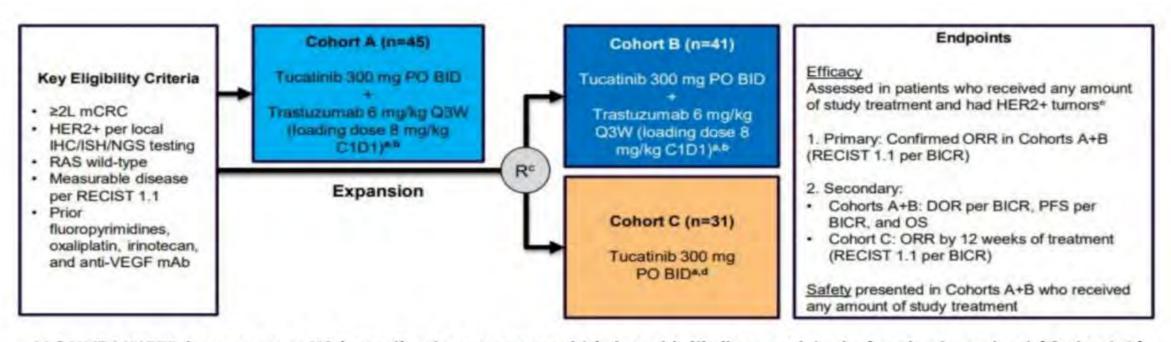
Fujii S et al. JCO Precis Oncol. 2020 Nov;4:6-19.

NCCN recommendation

NCCN Guidelines Version 5.2024 Colon Cancer

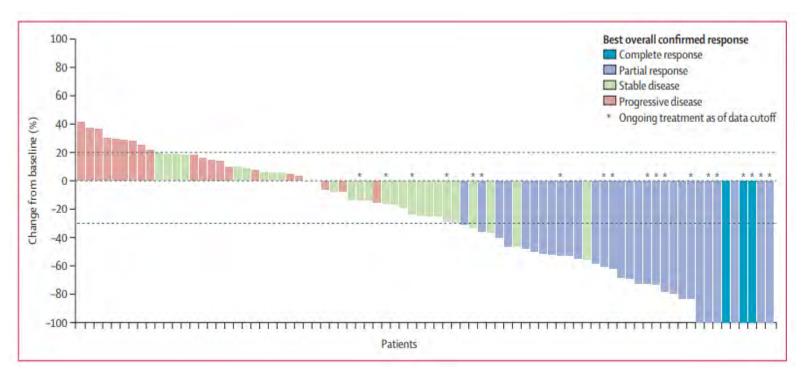
PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW

HER2 Testing


- Diagnostic testing is via IHC, fluorescence in situ hybridization (FISH), or NGS.
- Positive by IHC is defined as: 3+ staining in more than 50% of tumor cells. 3+ staining is defined as an intense membrane staining that can be circumferential, basolateral, or lateral. Those who have a HER2 score of 2+ should be reflexed to FISH testing.⁶²⁻⁶⁴ HER2 amplification by FISH is considered positive when the HER2:CEP17 ratio is ≥2 in more than 50% of the cells.⁶²⁻⁶⁴ NGS is another methodology for testing for HER2 amplification.⁶⁵
- Anti-HER2 therapy with signal transduction inhibition (eg, trastuzumab/pertuzumab, trastuzumab/tucatinib, trastuzumab/lapatinib) is only indicated in HER2-amplified tumors that are also RAS and BRAF wild-type.
- Fam-trastuzumab deruxtecan-nxki is only indicated in HER2-amplified tumors (IHC 3+).

HER2 therapies

Treatment guidelines

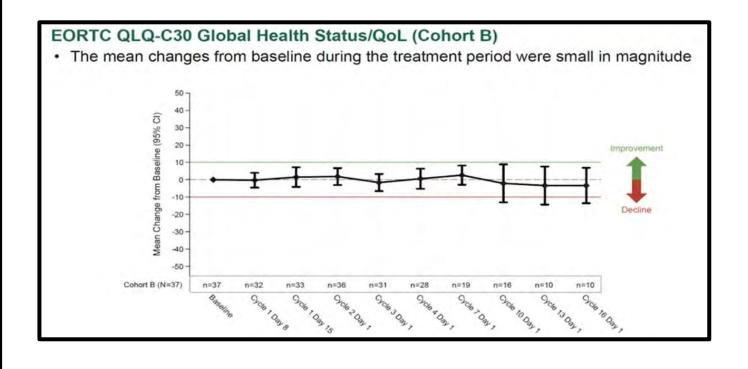

Trial and Design	Treatment Arms	Eligibility Criteria	Line of Treatment	Results
HERACLES-A phase II (single arm)	Trastuzumab plus lapatinib	HERACLES diagnostic criteria by IHC and FISH, KRAS exon 2 (codon 12 and 13) wild-type	≥ second	ORR: 30% mPFS: 21 weeks mOS: 46 weeks
HERACLES-B phase II (single arm)	Pertuzumab plus T-DM1	HERACLES diagnostic criteria by IHC and FISH, RAS wild-type	≥ second	ORR: 9.7% mPFS: 4.1 months mOS: not reported
My pathway phase II (basket trial)	Trastuzumab plus pertuzumab	HER2 overexpression and/or amplification by CISH, FISH, or NGS, RAS wild-type	≥ second	ORR: 32% mPFS: 2.9 months mOS: 11.5 months
Triumph phase II (single arm)	Trastuzumab plus pertuzumab	The patients who received standard therapy (including HER2-targeted therapy) with HER2 amplification by IHC and/or FISH on tissue and/or ctDNA	≥ second	Tissue-positive patients: ORR: 30% mPFS: 4 months mOS: 10.1 months ctDNA-positive patients: ORR: 28% mPFS: 3.1 months mOS: 8.8 months

MOUNTAINEER trial

MOUNTAINEER began as a US investigator-sponsored trial and initially consisted of a single cohort (Cohort A) and was expanded globally to include patients randomized to receive tucatinib + trastuzumab (Cohort B) or tucatinib monotherapy (Cohort C)

MOUNTAINEER trial

☐ ORR in cohort C	(tucatinib	monotherapy): 3.3%
-------------------	------------	--------------------


☐ Pts in combination therapy with centrally confirmed HER2 status:
ORR 46% for IHC 3+ and 20% with IHC 2+/FISH+

	Tucatinib plus trastuzumab (cohorts A and B; n=84)
Confirmed objective response rate (95% CI)*	38-1% (27-7-49-3)
Complete response†	3 (4%)
Partial response†	29 (35%)
Stable disease†‡	28 (33%)
Progressive diseaset	22 (26%)
Not available§	2 (2%)
Disease control rate (post hoc)¶	60 (71%)
Median duration of response, months (IQR)	12-4 (8-3-25-5)

MPFS: 8.2 months
mOS: 24.1 months

MOUNTAINEER trial

	Grade 1-2	Grade 3	Grade 4
Any adverse event	20 (67%)	8 (27%)	0
Diarrhoea	10 (33%)	0	0
Abdominal pain	6 (20%)	0	0
Fatigue	6 (20%)	0	0
Asthenia	5 (17%)	0	0
Nausea	5 (17%)	0	0
Urinary tract infection	4 (13%)	1 (3%)	0
Constipation	4 (13%)	0	0
Decreased appetite	3 (10%)	1 (3%)	0
Headache	3 (10%)	0	0
Stomatitis	3 (10%)	0	0
Decreased weight	3 (10%)	0	0
Hypokalaemia	2 (7%)	1 (3%)	0
Pyrexia	2 (7%)	1 (3%)	0
Increased aspartate aminotransferase	1(3%)	2 (7%)	0
Increased alanine aminotransferase	0	2 (7%)	0
Cholecystitis	0	1 (3%)	0
Duodenal obstruction	0	1 (3%)	0
Flank pain	0	1 (3%)	0
Kidney infection	0	1 (3%)	0
Pyelonephritis	0	1 (3%)	0

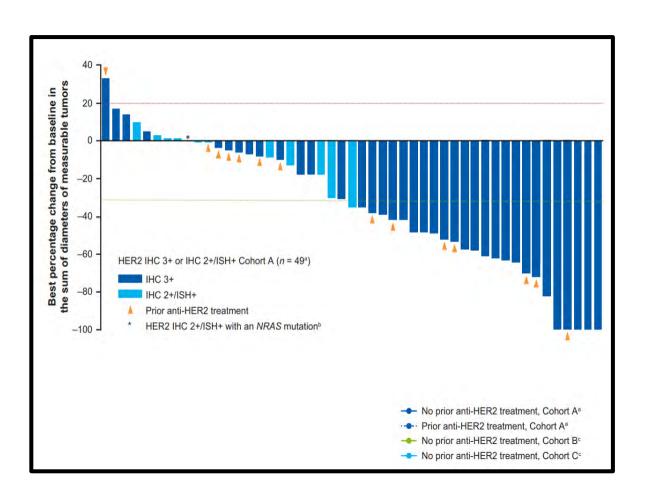
MOUNTAINEER trial – HER2 testing

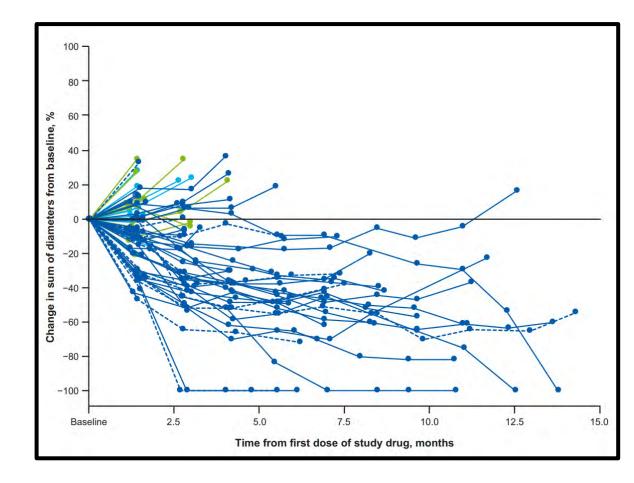
	Central IHC + FISH (n = 70)		PGDx tissue NGS (n = 50)		Guardant ctDNA (n = 71)		
Response	Positive (IHC3+) (n = 45)	Positive (IHC2+/ ISH+) (n = 15)	Negative (n = 10)	Positive (n = 44)	Negative (n = 6)		Negative (n = 15)
CR	3	0	0	1	0	1	1
PR	18	3	1	20	0	22	2
SDa	17	5	4	16	2	18	7
PD	7	6	5	7	4	14	4
NA	0	1	0	0	0	1	1
cORR, n, (%)	21, (46.7%)	3, (20.0%)	1, (10.0%)	21, (47.7%)	0, (0%)	23, (41.1%)	3, (20.0%)
(95% CI)	(31.7-	(4.3-	(0.3-	the state of the s	(0-	(28.1-55)	the second secon
	62.1)	48.1)	44.5)	63.3)	45.9)		
mDOR,	16		1.0	15.3	2	12.4	4
months (95% CI)	(10.6,			(8.9, 25.5)		(6.2, 38.3)	
mPFS, months	10	.1	2.8	10.9	2.1	8.1	10.9
(95% CI)	(4.2,	15.2)	(1.2, 6.3)	(7.0, 20.7)	(1.3)	(3.1, 10.2)	(2.0, 18.4)

☐ HER2 testing concordance:

- 81.0% (95%CI, 68.6-90.1) between blood and tissue NGS
- 92.6% (95%CI,83.7-97.6) between IHC/FISH and tissue NGS
- 79.5% (95%CI,69.2-87.6) between IHC/FISH and blood NGS

DESTINY-CRC 01 trial

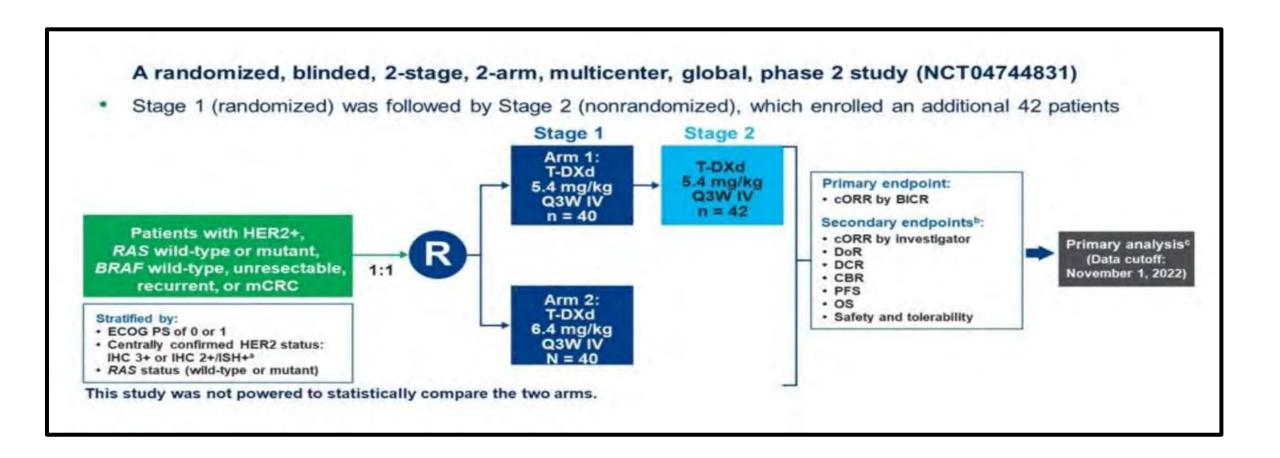

	HER2 IHC 3+ or IHC 2+/ISH+ Cohort A n=53	HER2 IHC 2+/ISH - Cohort B n=15	HER2 IHC 1+ Cohort C n = 18
Confirmed ORR by ICR	24 (45.3) [95% CI, 31.6-59.6]	0 [95% CI, 0.0-21.8]	0 [95% CI, 0.0-18.5]
Complete response	0	0	0
Partial response	24 (45.3)	0	0
Stable disease	20 (37.7)	9 (60.0)	4 (22.2)
Progressive disease	5 (9.4)	5 (33.3)	10 (55.6)
Not evaluable ^a	4 (7.5)	1 (6.7)	4 (22.2)
DCR	83.0 (70.2-91.9)	60.0 (32.3-83.7)	22.2 (6.4-47.6)
Median DoR, months	7.0 (5.8–9.5)	NE (NE-NE)	NE (NE-NE)
Median treatment duration, months	5.1 (3.9–7.6)	2.1 (1.4-2.6)	1.4 (1.3–1.5)


ORR: 45.3%

mPFS: 6.9 months

mOS: 15.5 months

DESTINY-CRC 01 trial



DESTINY-CRC 01 trial

| TEAEs reported in at least 20% of patients in the overall cohort (safety analysis set)

Preferred term	HER2 IHC 3+ or IHC 2+/ ISH + Cohort A n = 53		HER2 IHC 2+/ISH - Cohort B n = 15		HER2 IHC 1+ Cohort C n = 18		Overall N = 86	
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Patients with any TEAE	53 (100)	35 (66.0)	15 (100)	7 (46.7)	18 (100)	14 (77.8)	86 (100)	56 (65.1)
Nausea	37 (69.8)	5 (9.4)	9 (60.0)	0	7 (38.9)	0	53 (61.6)	5 (5.8)
Anemia	21 (39.6)	8 (15.1)	4 (26.7)	1 (6.7)	6 (33.3)	3 (16.7)	31 (36.0)	12 (14.0)
Fatigue	21 (39.6)	1 (1.9)	7 (46.7)	0	3 (16.7)	0	31 (36.0)	1 (1.2)
Decreased appetite	18 (34.0)	0	5 (33.3)	0	7 (38.9)	0	30 (34.9)	0
Platelet count decreased	17 (32.1)	6 (11.3)	4 (26.7)	0	7 (38.9)	2 (11.1)	28 (32.6)	8 (9.3)
Vomiting	23 (43.4)	1 (1.9)	3 (20.0)	0	1 (5.6)	0	27 (31.4)	1 (1.2)
Neutrophil count decreased	20 (37.7)	13 (24.5)	2 (13.3)	2 (13.3)	4 (22.2)	4 (22.2)	26 (30.2)	19 (22.1)
Diarrhea	19 (35.8)	0	0	0	4 (22.2)	1 (5.6)	23 (26.7)	1 (1.2)

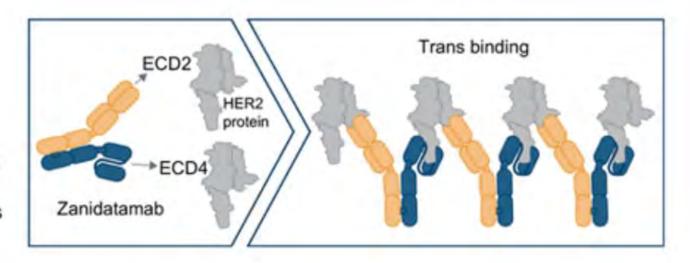
DESTINY-CRC 02 trial

DESTINY-CRC 02 trial

	T-DXd 5.4 mg/kg Q3W			T-DXd 6.4 mg/kg Q3W	
	Stage 1 n = 40	Stage 2 n = 42	Total N = 82	Stage 1 N = 40	
CORR, n (%) [95% CI] CR PR SD PD NE	18 (45.0) [29.3-61.5] 0 18 (45.0) 20 (50.0) 2 (5.0) 0	13 (31.0) [17.6-47.1] 0 13 (31.0) 20 (47.6) 6 (14.3) 3 (7.1)	31 (37.8) [27,3-49.2] 0 31 (37.8) 40 (48.8) 8 (9.8) 3 (3.7)	11 (27.5) [14.6-43.9] 0 11 (27.5) 23 (57.5) 4 (10.0) 2 (5.0)	
Confirmed DCR, n (%) [95% CI]	38 (95.0) [83.1-99.4]	33 (78.6) [63.2-89.7]	71 (86.6) [77.3-93.1]	34 (85.0) [70.2-94.3]	
Median DoR, mo (95% CI)	8.1 (4.2-NE)	4.6 (4.1-7.0)	5.5 (4.2-8.1)	5.5 (3.7-NE)	
Median follow-up, mo (range)	10.6 (2.9-17.1)	7.7 (0.5-10.3)	8.9 (0.5-17.1)	10.3 (0.7-16.4)	
Median treatment duration, mo (range)	5.5 (1.4-13.2)	4.8 (0.7-10.8)	5.5 (0.7-13.2)	4.9 (0.7-13.8)	
Median total dose, mg/kg (range)	39.6 (10.5-96.8)	37.4 (5.4-81.3)	37.8 (5.4-96.8)	40.8 (6.4-128.4)	
Median number of cycles initiated (range)	8.0 (2-19)	7.0 (1-15)	7.0 (1-19)	7.0 (1-20)	

DESTINY-CRC 02 trial

	MOUNTAINEER	DESTINY-CRC02
Agents	Tucatinib 300 mg PO BID Trastuzumab 6 mg/kg IV Q3W (loading dose 8 mg/kg C1D1)	T-DXd 5.4 mg/kg IV Q3W T-DXd 6.4 mg/kg IV Q3W
ORR	38.1%	37.8% (5.4 mg/kg) 27.5% (6.4 mg/kg)
mPFS	8.2 months	5.8 months (5.4 mg/kg) 5.5 months (6.4 mg/kg)
RAS Status	N/A	82.9% wild-type (5.4 mg/kg) 17.1% mutant (5.4 mg/kg) 85% wild-type (6.4 mg/kg) 15% mutant (6.4 mg/kg)
Received Prior HER2 Directed Therapy	N/A	20.7% (5.4mg/kg) 25% (6.4 mg/kg)


Strickler JH et al. Lancet Oncol. 2023 May;24(5):496-508. Raghav K et al. Lancet Oncol. 2024 Sep;25(9):1147-1162.

Future perspective

Zanidatamab

Zanidatamab's unique binding geometry

- Biparatopic binding targets two distinct HER2 epitopes and results in HER2 binding across a range of expression levels (low to high)
 - The geometry of zanidatamab prevents it from binding to the same HER2 molecule
 - Binding occurs on 2 separate HER2 molecules in trans

Dual HER2-binding of zanidatamab drives unique MOA

- HER2-receptor cross-linking, clustering, internalization, and downregulation
 - Enhanced receptor clustering on cell surface (cluster internalization, receptor downregulation) compared to trastuzumab ± pertuzumab
 - Inhibition of cellular proliferation
- Fc-mediated cytotoxicity: ADCC, ADCP, CDC

Zanidatamab

	Part 1: dose escalation (n=46)		Part 2: dose expansion (n=86	
	Grade 1-2	Grade 3	Grade 1-2	Grade 3
Diarrhoea	24 (52%)	0	36 (42%)	1 (1%)
Infusion reaction	20 (43%)	0	29 (34%)	0
Nausea	9 (20%)	0	8 (9%)	0
Fatigue	8 (17%)	1 (2%)	8 (9%)	0
Vomiting	5 (11%)	0	6 (7%)	0
Decreased appetite	2 (4%)	1 (2%)	2 (2%)	0
Arthralgia	1 (2%)	1 (2%)	0	0
Hypertension	0	1 (2%)	0	0
Hypophosphataemia	0	1 (2%)	0	0

	Biliary tract cancer (n=21)	Colorectal cancer (n=26)	Other cancer types (n=36)	Total (n=83)
Confirmed objective response, n (% [95% CI])	8 (38% [18 to 62])	10 (38% [20 to 59])	13 (36% [21 to 54])	31 (37% [27 to 49])
Partial response, n (%)	8 (38%)	10 (38%)	13 (36%)	31 (37%)
Stable disease, n (%)	5 (24%)	10 (38%)	16 (44%)	31 (37%)
Progressive disease, n (%)	8 (38%)	6 (23%)	7 (19%)	21 (25%)
Clinical benefit rate*	38% (18 to 62)	58% (37 to 77)	53% (35 to 70)	51% (39 to 62)
Disease control rate†	62% (38 to 82)	77% (56 to 91)	81% (64 to 92)	75% (64 to 84)
Median duration of response, months‡	8.5 (3.2 to not estimable)	5·6 (2·8 to 16·7)	9·7 (3·7 to not estimable)	6-9 (5-6 to 16-7)
Had event, n/n (%)	6/8 (75%)	9/10 (90%)	7/13 (54%)	22/31 (71%)
Censored, n/n (%)	2/8 (25%)	1/10 (10%)	6/13 (46%)	9/31 (29%)
Progression-free survival, months§	3·5 (1·8 to 6·7)	6-8 (3-5 to 7-8)	5·5 (3·6 to 8·3)	5·4 (3·7 to 7·3)
Had event, n (%)	19/22 (86%)	24/28 (86%)	28/36 (78%)	71/86 (83%)
Censored, n (%)	3/22 (14%)	4/28 (14%)	8/36 (22%)	15/86 (17%)

Zanidatamab

516MO

Zanidatamab (Zani) + chemotherapy (CT) in first-line (1L) human epidermal growth factor receptor 2-positive (HER2+) advanced/metastatic colorectal cancer (mCRC)

- \square N = 13
- \square Zani + mFOLFOX6 (n=6) or zani + mFOLFOX6-2 + bev (n=7)
- ☐ Three pts had DLTs (GI toxicity, nausea, vomiting and diarrhea)
- ☐ No pts discontinued zani due to a DLT.
- ☐ Grade 3-4 TRAEs occurred in 5 (38%) pts, 3 (23%) of whom experienced diarrhea.
- ☐ In 11 evaluable pts, there were 10 confirmed partial responses (ORR 91%; 1 pt had stable disease.

Ongoing efforts

Title	Phase	Status	Interventions	HER2 %
A Safety and Efficacy Study of ZW25 (Zanidatamab) Plus Combination Chemotherapy in HER2-Expressing Gastrointestinal Cancers, Including Gastroesophageal Adenocarcinoma, Biliary Tract Cancer, and Colorectal Cancer (NCT03929666)	П	Recruiting	Zanidatamab + chemotherapy	IHC 3+ or gene amplification
ACE1702 in Subjects With Advanced or Metastatic <i>HER2</i> -Expressing Solid Tumors (NCT04319757)	Ç.	Recruiting	ACE1702-001 (anti-HER2 oNK cells) Cyclophosphamide Fludarabine	IHC 2+ or 3+
CAR-Macrophages For the Treatment of <i>HER2</i> -Overexpressing Solid Tumors (NCT04660929)	1	Recruiting	CT-0508 (anti-HER2 CAR macrophages)	Missing
A First-in-Human Study Using BDC- 1001 as a Single Agent and in Combination With Nivolumab in Advanced <i>HER2</i> -Expressing Solid Tumors (NCT04278144)	1/11	Recruiting	BDC-1001 (anti-HER2 monoclonal antibody conjugated to a TLR7/8 dual agonist) Nivolumab	Missing
A Study of SBT6050 Alone and in Combination With PD-1 Inhibitors in Subjects With Advanced <i>HER2</i> - Expressing Solid Tumors (NCT04460456)	I/lb	Recruiting	SBT6050 Pembrolizumab Cemiplimab	IHC 2+ or 3+
Binary Oncolytic Adenovirus in Combination With HER2-Specific Autologous CAR VST, Advanced HER2 Positive Solid Tumors (VISTA) (NCT03740256)	I/lb	Recruiting	CAdVEC	IHC 2+ or 3+
TAEK-VAC-HerBy Vaccine for Brachyury and HER2 Expressing Cancer (NCT04246671)	1	Recruiting	TAEK-VAC-HerBy	Missing

Djaballah SA, et al. Am Soc Clin Oncol Educ Book. 2022;42:1–14.

Treatment guidelines

ESMO guidelines1

- Anti-HER2 inhibition is optionally recommended in third and later lines of therapy using a combination of trastuzumab + lapatinib or trastuzumab + pertuzumab, especially in RAS wild-type tumours
- Monotherapy with trastuzumab deruxtecan is another recommended option

NCCN guidelines^{2,3}

- Trastuzumab* + [pertuzumab, lapatinib or tucatinib] or trastuzumab deruxtecan are recommended as options for subsequent therapy of patients with HER2-amplified and RAS/BRAF wild-type advanced or mCRC
- Trastuzumab* + [pertuzumab, lapatinib or tucatinib] may also be appropriate for initial therapy for patients who are not suitable for intensive therapy

- 1. Cervantes A, et al. Ann Oncol. 2023;34:10–32.
- 2. NCCN Guidelines Version 5.2024 Colon Cancer.
- NCCN Guidelines Version 5.2024 Rectal Cancer.

Take home messages

- ☐ Detection of HER2 amplification by ctDNA is useful; however, pts w/o HER2 amplification should be confirmed with a tissue-based assay;
- ☐ Trastuzumab/tucatinib (HER2+, RAS wt) and trastuzumab deruxtecan (HER2+) as preferred treatment in HER2 mCRC;
- ☐ MOUNTAINEER-03 is an ongoing a phase 3 study of tucatinib, trastuzumab, and mFOLFOX6 as first-line treatment in HER2+ mCRC;
- ☐ New agents like zanidatamab and targeting HER2 in early/upfront lines as promising approaches.

tiago.biachi@moffitt.org