PEPTIDE RECEPTOR **RADIONUCLIDE THERAPY** (PRRT) AND ITS ROLE IN NEUROENDOCRINE TUMORS

Tiffany Valone, PA-C, MS, OT

GIAPP Supervisor

Gastrointestinal Tumor Program

Moffitt Cancer Center

9/28/2023

SYSTEMIC TREATMENT OPTIONS IN NETS

- SB and Lung NETs
 - Somatostatin Analogues
 - Everolimus
 - PRRT
- PNENs
 - Somatostatin Analogues
 - Everolimus
 - PRRT
 - Sunitinib

WHAT IS PRRT AND HOW DOES IT WORK?

- Peptide Receptor Radionuclide Therapy (PRRT) is a highly targeted and effective form of radiopharmaceutical therapy (RPT) with minimal side effects for treating NETs with an abundance (or overexpression) of somatostatin receptors.
- In PRRT, the patient receives an intravenous injection of a drug such Octreotide (DOTATOC) and Octreotate (DOTATATE) that is chemically bound to (or radiolabeled with) a radioactive material mainly lutetium-177 (yttrium-90, or indium-111). The radioactive drug binds octreotide to the somatostatin receptors on the tumor cells and the tumor cells with radiation.
- The radioactivity damages the tumor cell's DNA and destroys the cell.
- Since PRRT specifically targets protein receptors on cancer cells, it causes minimal damage to healthy cells.

Society of Nuclear Medicine and Molecular Imaging: https://www.snmmi.org/AboutSNMMI/Content.aspx?ItemNumber=29883

THE ROTTERDAM EXPERIENCE 2000– 2013

OBJECTIVE RESPONSES, PFS AND OS

Primary site	Total	PR C	(+ R	S	D	P	D	Median PFS and OS	
	N	N	%	N	%	Ν	%	(months)	
Midgut NET Non-PD PD	181 32 94	57 10 29	31 31 31	99 18 50	55 56 53	16 3 9	9 9 10	30 24 29	60 82 50
Pancreatic NET Non-PD PD	138 21 66	72 10 38	55 48 58	40 10 15	30 48 23	17 1 10	13 5 15	30 31 31	71 ND 71
Hindgut	12	4	33	6	50	1	8	29	ND
Bronchial	23	7	30	7	30	6	26	20	52
Other foregut	12	5	42	5	42	2	17	25	ND
Unknown primary	82	29	35	35	43	11	13	29	53
Total	443	174	39	192	43	53	12	29	63

ND, not defined.

Brabander T et al. Clin Cancer Res 2017;23(16):4617-24.

SUBACUTE HEMATOLOGIC TOXICITY

	Number of patients with CTCAE grade 3/4 (%)
Overall	61/582 (10%)
Low platelet	30/582 (5%)
Low WBC	32/582 (5%)
Low hemoglobin	22/582 (4%) No grade 4
Low lymphocytes	288/581 (50%)
Persistent CTCAE grade 3/4 lymphopenia at 3 months	74/287 (26%)
Persistent CTCAE grade 3/4 lymphopenia at 30 months	6/108 (6%)

 77% of patients with grade 3/4 toxicity on platelets, WBC or hemoglobin had normalized within 3 months

DELAYED TOXICITY

- 582 patients with long-term follow-up (median 78 months)
- **MDS/AML:** I.5% (9/582) of patients developed MDS, (median 55 months after treatment), and 0.7% (4/582) of patients developed acute leukemia (median 28 months after treatment)
- None of these patients received alkylating agents
- Nephrotoxicity grade 3/4: in 0.3% (2/581). Serum creatinine normalized in both patients at 3 months. 6 patients had renal failure during follow-up, all attributable to other causes
- Hepatotoxicity grade 3/4: short-term grade 3/4 AST/ALT elevations in 3% (20/581) of patients. After 3 months, in 0.3% (2/581) of patients

NETTER-I STUDY OBJECTIVES AND DESIGN

MAIN INCLUSION CRITERIA

- Patients \geq 18 years of age
- Metastatic or locally advanced, inoperable, histologically proven, midgut NET
- Ki-67 index ≤ 20% (Grade I–2)
- Progressive disease (RECIST Criteria 1.1 centrally confirmed) on uninterrupted fixed dose of octreotide LAR (20–30 mg every 3–4 weeks)
- Somatostatin receptor-positive disease
- Karnofsky Performance Score ≥ 60
- Including functioning and non-functioning

NETTER-I OBJECTIVES

- Primary objective:
- To compare Progression Free Survival (PFS) after treatment with ¹⁷⁷Lu-Dotatate to treatment with high-dose octreotide LAR

• Secondary objectives:

- To compare the Objective Response Rate (ORR) between the two study arms
- To compare the Overall Survival (OS) between the two study arms
- To compare the Time to Tumor Progression (TTP) between the two study arms
- To evaluate the safety and tolerability
- To evaluate the health-related quality of life (QoL)

POPULATION CHARACTERISTICS

	¹⁷⁷ Lu-DOTATATE (n=116)	Octreotide LAR 60mg (n=113)
Ki-67 , n (%) G1/G2	76/40 (66/34%)	81/32 (72/28%)
SRS, Krenning scale, n (%) Grade 2 Grade 3 Grade 4	13 (11%) 34 (29%) 69 (60%)	14 (12%) 32 (28%) 67 (59%)
Chromogranin Α (μg/L) , mean (SD)	649 (420)	670 (422)
5-HIAA (mg/24h) , mean (SD)*	100 (183)	77 (83)

¹⁷⁷LU-DOTATATE FIXED TREATMENT SCHEDULE:

• One treatment cycle every 8 weeks x 4

PROGRESSION-FREE SURVIVAL

- N=229 (ITT)
- Number of events: 90
 - ¹⁷⁷Lu-DOTATATE: 23
 - Oct 60 mg LAR: 67
- HR 0.21, 95% CI 0.129–0.338;
 P<0.0001
- 79% reduction in the risk of disease progression/death

NETTER-I: OVERALL SURVIVAL IN THE INTENTION-TO-TREAT POPULATION (MEDIAN F/U 76 MONTHS)

CI, confidence interval; HR, hazard ratio; OS, overall survival.

SYSTEMIC ANTI-CANCER TREATMENTS DURING LONG-TERM FOLLOW-UP

*All subsequent lines of treatment; does not include somatostatin analogues; †Includes protein kinase inhibitors and other agents;

[‡]8/117 patients (6.8%) in the ¹⁷⁷Lu-DOTATATE arm and 36/114 patients (31.6%) in the control arm specifically received ¹⁷⁷Lu-DOTATATE.

PRRT, Peptide Receptor Radionuclide Therapy.

OBJECTIVE RESPONSES

	177-Lu-Dotatate (n=101)	Octreotide LAR 60 mg (n=100)	<i>P</i> value
Complete response, n (%)	1 (1)	0 (0)	
Partial response, n (%)	17 (17)	3 (3)	
Objective response rate* % (95% CI)	18 (10–25)	3 (0–6)	<i>P</i> =0.0008
All patients	(n=116)	(n=113)	
Progressive disease, n (%)	5 (4)	27 (24)	
Stable disease, n (%)	77 (66)	70 (62)	

KEY ADVERSE EVENTS: ALL GRADES AND GRADES 3-4

		¹⁷⁷ Lu-Dotata	ate (N=111)	Octreotide LAR (N=110)		
		All grades	Grade 3–4	All grades	Grade 3–4	
System Organ Class	Adverse event	%	%	%	%	
	Nausea	59	4	12	2	
	Vomiting	47	7	10	0	
Gastrointestinal	Diarrhea	29	3	19	2	
disorders	Abdominal pain	26	3	26	5	
	Abdominal distension	13	0	14	0	
General disorders and administration site conditions	Fatigue / asthenia	40	2	25	2	
	Edema peripheral	14	0	7	0	
Blood and lymphatic system disorders	Thrombocytopenia	25	2	1	0	
	Lymphopenia	18	9	2	0	
	Anemia	14	0	5	0	
	Leukopenia	10	1	1	0	
	Neutropenia	5	1	1	0	

NETTER-I: SAFETY UPDATE

- No new cases of MDS or acute leukaemia were reported during long-term follow-up.
- A total of 2/111 ¹⁷⁷Lu-DOTATATE-treated patients (1.8%) developed MDS.
- During the study, the rate of ≥ grade 3 nephrotoxicity in ¹⁷⁷Lu-DOTATATEtreated patients was low and similar to the control arm (6/111 patients [5.4%] and 4/112 patients [3.6%], respectively).
- No additional patients in the ¹⁷⁷Lu-DOTATATE arm had ≥ grade 3 nephrotoxicity during long-term follow-up.

HEALTH-RELATED QOL ANALYSIS IN NETTER-I

Global Health Status TTD

Physical Functioning TTD

Role Functioning TTD

HEALTH-RELATED QOL ANALYSIS IN NETTER-I

Diarrhea

PRACTICAL POINTS

Best practice

- Outpatient administration.
- Relatively low-risk to family members and general public: avoid sharing bed and limit contact with children/pregnant women for 1 week after each treatment

Dosing intervals

• Duration of time off long-acting SSA: 4 weeks vs 6 weeks? Does interval matter?

Amino acids

 Amino acid infusion: substantially reduced nausea with compounded arginine/lysine (2.5%) vs. commercial amino acid formulations (17% vs 100% of patients)

BEYOND 4 CYCLES? SALVAGE ¹⁷⁷LU-DOTATATE

Study	Sample size	ze	Median (95% Cl)	Median follow-up	
¹⁷⁷ Lu-PRRT as initial P	RRT				
Rudisile 2019	32	_	6.00 (0.00–16.00)	25 months	
Severi 2016	26	—	9.00 (5.00-17.00)	NA	
Sabet 2014	33		13.00 (9.00-18.00)	23 months	
Van der Zwan 2019	168	+	14.60 (12.40-16.90)	> 30 months	
Limouris 2018	13	+	20.00 (4.00-41.00)	NA	
I-V Subtotal (I ² = 42.6%	, <i>P</i> = 0.138)	\diamond	13.40 (11.55–15.24)		
D+L Subtotal		\diamond	12.26 (9.06–15.47)		
¹⁷⁷ Lu- and/or ⁹⁰ Y-PRRT	as initial PRR	г			
Severi 2016	26		22.00 (16.00-36.00)	36 months	
Baum 2018	116	-	11.00 (8.10–13.80)	NA	
I-V Subtotal (I ² = 76.7%	, <i>P</i> = 0.038)	\diamond	11.83 (9.09–14.57)		
D+L Subtotal		$\langle \rangle$	15.41 (4.85–25.98)		
Heterogeneity between groups: <i>P</i> = 0.352					
I-V Overall (I ² = 50.5%,	<i>P</i> = 0.059)	\diamond	12.91 (11.37–14.44)		
D+L Overall		\diamond	12.52 (9.82–15.22)		
I 41		0 4	1		
		PFS, months			

Extensive peritoneal disease: radiation peritonitis may be treatable with steroids.

Disease predominantly in the root of the mesentery, unlikely to respond to ¹⁷⁷Lu-Dotatate

Heterogeneous SSTR expression, with low or absent expression in some tumors

⁶⁸Ga⁻dotatate report: "Somatostatin receptor expressive hepatic metastases..."

Very high volume or heavily pretreated liver metastases (particularly with SIRT)

Toxicity	Traditional Therapy	PRRT	Р
Hyperbilirubinemia	19 (25%)	5 (29%)	0.76
Hepatocellular injury	16 (21%)	6 (35%)	0.22
Mixed picture	12 (15%)	5 (30%)	0.29
Varices	1 (4%)	0	0.60
Hepatic encephalopathy	3 (3.9%)	3 (18%)	0.07
Ascites	5 (6.5%)	10 (41%)	<.001
Death from treatment-associated liver failure	1 (4%)	3 (18%)	0.01

Rates of hepatotoxicity in population of patients with liver metastases (majority with prior liver-directed therapies)

Renal outflow obstruction/hydronephrosis

Zaknun et al. Eur J Nucl Med Mol Imaging. 2013; 40(5): 800–816

Does prior alkylating agent chemotherapy increase risk of MDS/AL?

- 49 patients at Moffitt Cancer Center received both PRRT and capecitabine/temozolomide. 5 (10%) developed MDS or AL
- None of the patients who received CAPTEM *without* PRRT developed a longterm hematological toxicity
- This cumulative risk needs to be considered when sequencing treatments in NETs
- Clonal hematopoiesis analysis may identify patients at risk for MDS/AL

WHERE DOES PRRT BELONG?

- Phase III randomized data only in midgut NETs
- Phase II randomized data in pancreatic NETs
- Early phase data suggest higher response rates in non-midgut NETs (especially pancreatic NET)
- Approved by multiple regulatory agencies (including EMA and FDA) for advanced GEP-NETs
- SSTR expression is a strong predictive marker
- Consider as 2nd line therapy in patients with strong SSTR expression
- Advantages: Limited treatment course (4 cycles of treatment), long PFS, relatively low toxicity
- How do we define progression prior to PRRT and after PRRT???