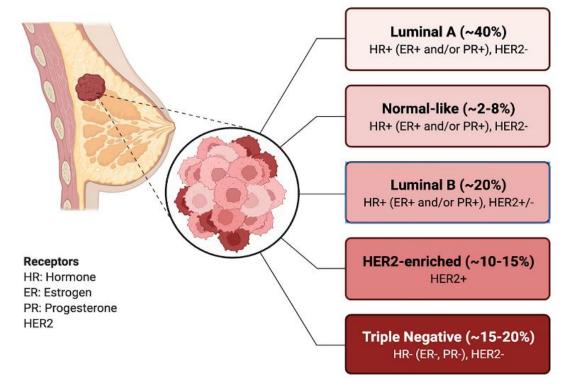
Triple-negative breast cancer and DNA repair capacity: identification of epigenetic markers using an *in vitro* model

Carmen Ortiz-Sánchez, PhD Postdoctoral Researcher and Program Manager DoD Health Disparities Prostate Cancer Project Department of Basic Sciences Ponce Health Sciences University - Ponce Research Institute Dr. Jaime Matta's laboratory

Carmen Ortiz-Sánchez¹, Jarline Encarnación-Medina¹, Ralphdy Vergne², and Jaime Matta¹ ¹Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716-2347; ²American University of Antigua, School of Medicine, Jabberwock Rd, Osbourn, Antigua y Barbuda



FLASCO 12th Annual Puerto Rico Oncology Symposium February 3, 2023 San Juan, PR

Background

- Breast cancer (BC) is the leading type of cancer diagnosed in women worldwide.
- BC is the second leading cause of cancerrelated mortality in women in the US and the **first** in Puerto Rican women.
- Puerto Rico (PR) Cancer Registry data (2018) shows that BC is the leading cancer type in terms of incidence (28.9% of all cancer cases) and mortality (18.9% of all cancer deaths).

Figure 1. Schematic figure summarizing breast cancer subtypes based on their expression of hormone receptors, Ki-67, and the receptor tyrosine kinase HER2. Source: Rizzo et al. 2022

Background

- DNA repair capacity (DRC) is defined as the ability of the cell to repair any damage to the DNA by endogenous or exogenous sources.
- DRC is an important factor contributing to the inter-individual variability in response to carcinogens and cancer susceptibility in the general population.
- Regarding BC, studies have shown that having a low DNA repair capacity (DRC) measured in lymphocytes, has been associated with an increased risk of developing the disease.
- Moreover, TNBC patients have shown to have the lowest DRC levels when compared with patients with other molecular subtypes.

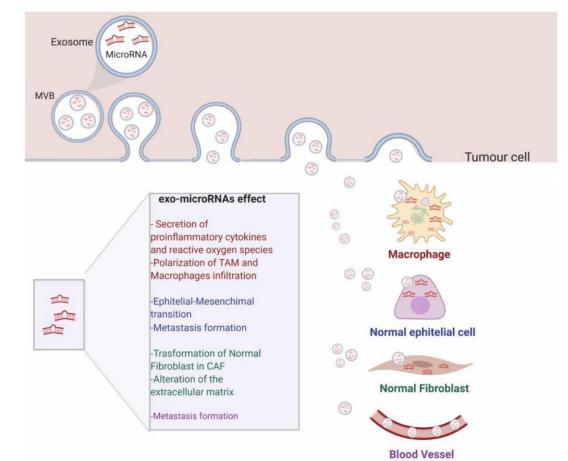
International Journal of Molecular Sciences

MDPI

Article

Variability in DNA Repair Capacity Levels among Molecular Breast Cancer Subtypes: Triple Negative Breast Cancer Shows Lowest Repair

Jaime Matta ^{1,*} ⁽¹⁾, Carmen Ortiz ¹ ⁽¹⁾, Jarline Encarnación ¹ ⁽¹⁾, Julie Dutil ¹ and Erick Suárez ²



Background

- miRNAs, as epigenetic modulators, affect the protein levels of the target mRNAs without modifying the gene sequences.
- Exo-miRNAs: small non-coding RNAs that regulate gene expression at a post-transcriptional level packed in exosomes.
- Exo-miRs function as cellular communication centers involved in genetic exchange between cells, and their preservation in body fluids make them a good target for a liquid biopsy.

Figure 2. Schematic representation of the roles of exomiRNAs on distant cells and in the cancer microenvironment

Although some studies have identified exo-miRNA candidates in TNBC using clinical samples, there is a gap regarding exo-miRNAs related to DRC levels in TNBC.

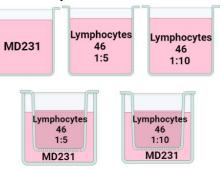
psm.edu

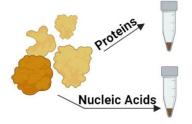
Objective

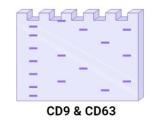
 To identify the exo-miRNAs involved on the interaction between TNBC cells and lymphocytes with different DRC levels using an *in vitro* model through coculture systems.

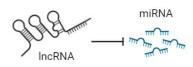
Hypothesis


 We expect to detect significant variations on the exo-miRNA expression profiles in cocultures resulting from the interaction between MDA-MB-231 cells and lymphocytes with different DRC levels.




Methods


B. Experimental Conditions


C. Exosome Isolation

D. Exosome Markers

E. miRNAs Extraction

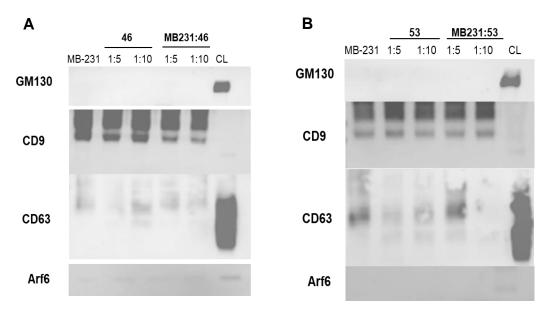
miRNA extraction kit (Qiagen & Qubit 2.0)

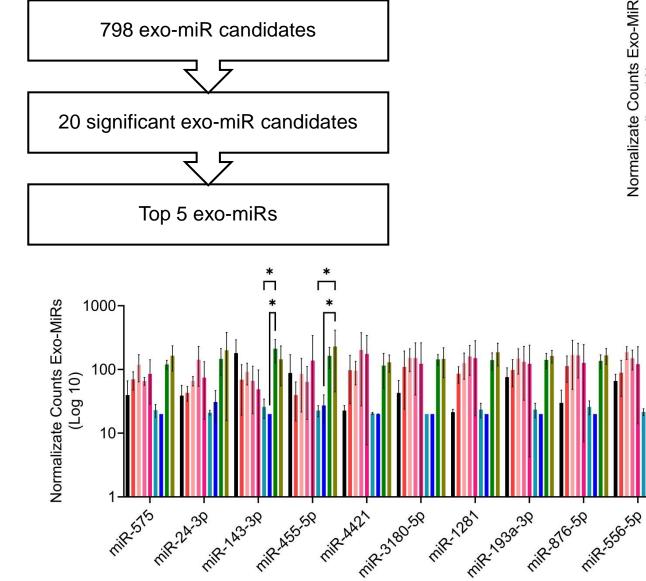
Table 1. Cell lines used in coculture systems

Cell line	Cell type	Model
MDA-MB-231	Breast adenocarcinoma	TN BC
GM02246	B-Lymphocyte	Medium DRC (XPC-KD)
GM02253	B-Lymphocyte	Low DRC (XPD-KD)

Results

Western blot for exosome markers




Figure 3. Expression of exosomal markers in coculture systems of MDA-MB-231 and (A) GM02246 and (B) GM02253 cell lines at two seeding ratios (1:5 and 1:10). GM130 and Arf6 were used as markers for cellular contamination. Cell lysate (CL) was included for detection of cellular contamination markers.

Results

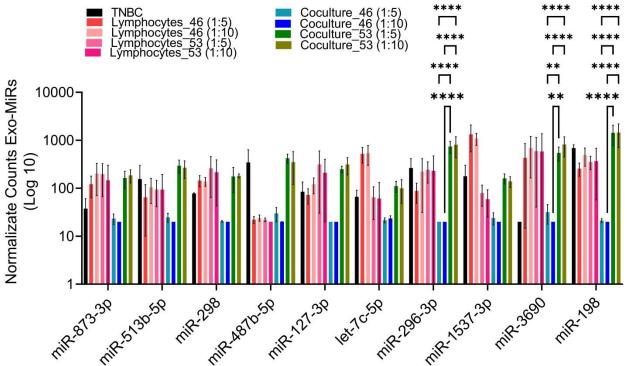


Figure 6. Differentially expressed exo-miRs among TNBC and lymphocytic cell line co-culture systems. Bars represent mean of the normalized exo-miRs counts \pm SD of three independent experiments, ****p < 0.001, **p < 0.01, and *p < 0.05.

Results

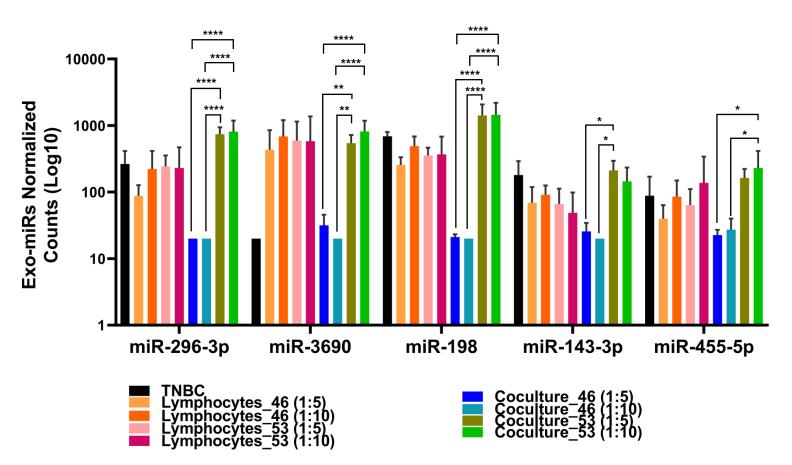


Figure 7. Top 5 differentially expressed exo-miRs among TNBC and lymphocytic cell line co-culture systems. Bars represent mean of the normalized exo-miRs counts \pm SD of three independent experiments, ****p < 0.001, **p < 0.01, and *p < 0.05.

Conclusions

- Variations on exo-miRNA profile were found when comparing monocultures with cocultures with the different cell lines, in terms of exo-miR secretion.
- In terms of TNBC monocultures, two exo-miRs were observed in high expression miR-487b-5p and miR-143-3p when compared with the monocultures of any of the cell lines.
- For the top 5 candidates (miR-296-3p, miR-3690, miR-198, miR-143-3p, and miR-455-5p), an increased expression was observed in coculture systems with the low DRC cell model (MDA-MB-231:GM02253) at any of the two seeding ratios.
- Our results shows that the TNBC cells can differentially secret exo-miRNAs. The results also suggest that these secretions might be associated by the DRC levels of the lymphocytes.
- We believe that our results will allow for the understanding of the role of exo-miRs in TNBC and their use as a potential tool to improve BC diagnosis.

Future Directions

- Perform the validation of the selected candidates (miR-296-3p, miR-3690, miR-198, miR-143-3p, and miR-455-5p).
- As a secondary aim, the expression of these candidates will also be evaluated in plasma samples from TNBC patients to test the potential of these exo-miRs to identify TNBC and any other tumor feature (i.e. tumor grade, metastasis, among other).

Acknowledgements

Matta lab

- Jaime Matta, PhD
- Jarline Encarnación, MS
- Ralphdy Vergne, BS
- Lenin Godoy, BS

Funding:

- Puerto Rico Science and Technology Trust agreement #2017-00003
- U54 PHSU-MCC Partnership Grants #U54CA163071

Ponce Health Sciences University-Moffitt Cancer Center Partnership

