Liquid Biopsy in NSCLC Molecular profiling & Research Use

Fatima Tuz Zahra, MD

Hematology and Oncology Fellow Moffitt Cancer Center and Research Institute/University of South Florida

Bruna Pellini, MD

Assistant Member, Department of Thoracic Oncology

Moffitt Cancer Center and Research Institute

Assistant Professor, Department of Oncologic Sciences

Morsani College of Medicine, University of South Florida

Disclosures:

Dr. Tuz Zahra has no conflicts to disclose Dr. Pellini discloses:

- Research support: Bristol Myers Squibb Foundation/the Robert A. Winn Diversity in Clinical Trials Awards Program (institution), NIH/NCI 1R21CA259215-01A1 (institution), Bristol Myers Squibb (institution)
- Advisory Board/Consultant: : AstraZeneca, Guardant Health, Regeneron, Illumina, Foundation Medicine, AH Merus, BMS
- Speaker Honoraria: MJH Life Science, Merck, Foundation Medicine, BioAscend, PlaytoKnow AG, Grupo Pardini, GBOT

Outline

- ctDNA definition & sources of ctDNA
- ctDNA applications in oncology:
 - o Molecular profiling
 - Case 1 & 2 presentation
 - o Treatment Monitoring
 - 2023 ASCO updates

Tumor-derived fragments of nucleic acids identified in the blood are called circulating tumor DNA (ctDNA)

ctDNA Applications in Oncology

Shields M, Chen K...Pellini B. Int J Mol Sci. 2022 5

ctDNA sequencing has high sensitivity and specificity to identify actionable genomic alterations

Table 3. Comparison of tissue versus cfDNA results for the guideline-recommended biomarkers in newly diagnosed metastatic NSCLC with FDA-approved therapies, *EGFR* exon 19 deletion and L858R, *ALK* fusion, *ROS1* fusion, and *BRAF* V600E

		Tissue+	Tissue-	Tissue not assessed	Tissue QNS	Total		
EGFR exon 19 del	cfDNA+	18	0	0	1	19	Sensitivity	81.8%
	cfDNA-	4	201	19	25	249	PPV	100.0%
	cfDNA TND	0	11	1	1	13	Specificity	100.0%
	cfDNA cancelled	0	0	1	0	1	NPV	98.0%
	Total	22	212	21	27	282	Concordance	98.2%
EGFR L858R	cfDNA+	9	0	0	2	11	Sensitivity	90.0%
ALK fusion (original)	cfDNA-	1	213	19	24	257	PPV	100.0%
	cfDNA TND	0	11	1	1	13	Specificity	100.0%
	cfDNA cancelled	0	0	1	0	1	NPV	99.5%
	Total	10	224	21	27	282	Concordance	99.6%
	cfDNA+	5	0	0	1	6	Sensitivity	62.5%
	cfDNA-	3	207	27	25	262	PPV	100.0%
	cfDNA TND	1	10	2	0	13	Specificity	100.0%
	cfDNA cancelled	0	1	0	0	0	NPV	98.6%
	Total	9	218	29	26	282	Concordance	98.6%
ALK fusion (reanalysis)	cfDNA+	6	0	0	1	7	Sensitivity	75.0%
ROSI fusion	cfDNA-	2	207	27	25	261	PPV	100.0%
	cfDNA TND	1	10	2	0	13	Specificity	100.0%
	cfDNA cancelled	0	1	0	0	1	NPV	99.0%
	Total	9	218	29	26	282	Concordance	99.1%
	cfDNA+	0	0	0	0	0	Sensitivity	-
	cfDNA-	2	151	85	30	268	PPV	-
	cfDNA TND	0	7	5	1	13	Specificity	100.0%
	cfDNA cancelled	0	1	0	0	1	NPV	98.7%
	Total	2	159	90	31	282	Concordance	98.7%
BRAF V600E mutation	cfDNA+	2	0	0	0	2	Sensitivity	100.0%
	cfDNA-	0	90	158	18	266	PPV	100.0%
	cfDNA TND	0	5	8	0	13	Specificity	100.0%
	cfDNA cancelled	0	0	1	0	1	NPV	100.0%
	Total	2	95	167	18	282	Concordance	100.0%

NSCLC (Guardant 360) Liquid biopsy NGS assay that offers comprehensive testing for 74 genes most relevant to solid tumors.

Stage IV

NOTE: Overall concordance across all four genes was greater than 98.2%, with a PPV of 100%. With continuous assay improvements, one cfDNA result originally reported as a false-negative for ALK fusion was identified as positive.

Leighl N et al. Clin Cancer Res. 2019

- 08/03/2022: 79-year-old, never smoker male, left pleural effusion + consolidation on CT Chest.
- Bronchoscopy and Thoracentesis: Adenocarcinoma of Lung Primary. Negative Brain MRI.
- PD-L1 (IHC): Performed on pleural fluid = TPS 70 %.

08/26/2022: Liquid Biopsy (NGS testing) = No actionable mutations.

- (08/23/2022 10/02/2022): Patient was treated with single agent Pembrolizumab x 3 cycles.
- F/U CT TAP: Increased lung mass + pleural effusion = Disease progression.
- **Patient referred to MCC for** second opinion/clinical trial consideration.

09/20/2022: Pleural Fluid NGS testing. ERBB2/Her-2 Exon 20 insertion identified, GOF oncogenic.

- Patient was started on **Fam-trastuzumab deruxtecan on 11/10/2022**.
- 07/17/2023 CT-TAP: Left lung scarring without measurable tumor. Improved left lower lobe aeration with decreased loculated effusion and no new metastases.

Case 2

•06/29/2022: 62-year-old woman presented with R hilar mass + R pleural effusion.

- Thoracentesis: Cytology = adenocarcinoma of lung.
- •07/25/2022: CARIS testing on pleural fluid but <mark>limited tissue.</mark> PD-L1 = 1% TPS

- MCC referral for 2nd line Tx with Amivantamab or Mobocertinib vs Clinical trial.
- Pre- Clinical trial work up = Repeat LN biopsy + (EGFR gene mutational analysis + solid tissue NGS)

- Treated with Carboplatin + Pemetrexed + Pembrolizumab and then maintenance Pembrolizumab+Pemetrexed
- 03/14/2023 CT TAP: Worsening R pleural effusion. Concern for new hilar mets = Progressive disease

- Idylla EGFR Mutation Assay: No EGFR mutations detected.
- Comprehensive NGS testing on same core biopsy:
 POSITIVE for EGFR exon 20 insertion.

 04/06/2023 - Liquid Biopsy : <u>NGS testing :</u> EGFR exon 20 insertion identified.

- Patient enrolled in Clinical Trial MCC 20409 - 06/05/2023.
- **07/17/2023 CT-TAP** : Progressive disease
- Discontinued from the trial and recommended to discuss next-line amivantamab vs. mobocertinib with her local oncologist.

ctDNA applications in oncology

Shields M, Chen K...Pellini B. Int J Mol Sci. 2022

ctDNA decrease ≥90% at week 3 or 9 during cemiplimab treatment is associated with improved OS

Cemiplimab

Cemiplimab

Vokes N et al. 2023 ASCO Annual Meeting.

Clearance (100%; n=20)

11

Circulating Tumor DNA Monitoring on Chemo-immunotherapy Informs Outcomes in Advanced Non-Small Cell Lung Cancer

Pellini B et al. Clin Cancer Res. 2023 12

ctDNA detection on chemoIO can inform subsequent outcomes on IO maintenance, even without baseline ctDNA analysis

Patients with undetectable EGFR 8 weeks after treatment start had better PFS and OS

Mack PC et al. Clin Cancer Res. 2022

Treatment escalation based on ctDNA detection is under investigation for patients with *EGFR* mutations

<u>Treatment plan</u>: All patients will receive osimertinib 80mg orally daily. Patients enrolled in Arm B will receive Carboplatin (AUC 5 IV q 3 weeks) and Pemetrexed (500mg/m2 IV q 3 weeks) for a total of 4 cycles followed by pemetrexed maintenance from cycle 8 onwards.

<u>Total enrollment</u>: Approximately 571 patients will be screened. 80 will be eligible for randomization and treatment consent. 76 will be randomized.

Time to completion: 5 years

National Study PI: Helena Yu, MD (MSKCC); Moffitt PI: Bruna Pellini, MD

Take home points

- Multiple technologies are available for plasma genotyping with variable sensitivity and specificity
- ctDNA can identify patients with advanced NSCLC who are responding to therapy (molecular response) at an early timepoint
- Ongoing trials will inform if clinical decision-making can be guided by ctDNA and if that improves patients' outcomes

Questions?

www.moffitt.org

Contact: <u>Bruna.Pellini@moffitt.org</u> @BrunaPellini

Fatima.tuzzahra@moffitt.org

