

Updates on management of Lung Cancer. Era of Hope.

FLASCO 12th Annual Puerto Rico Oncology Symposium 02/04/23

Rami Manochakian, MD

Consultant, Thoracic Oncology Associate Professor of Medicine Vice-Chair Education. Hem/Onc fellowship Program Director Division of Hematology/Oncology. Mayo Clinic Florida

Twitter: 💟 @RManochakian

• Consulting/Advisory Boards:

AstraZeneca, Janssen, Alpha-2, Turning Point, Cardinal Health

Outline

- Epidemiology of lung cancer
- Updates on management of early-stage NSCLC
- Updates on management of stage IV NSCLC

Outline

- Epidemiology of lung cancer
- Update on management of early-stage NSCLC
- Update on management of stage IV NSCLC

Estimated New Cases							
			Males	Female	s		
Prostate	288,300	29%			Breast	297,790	31%
Lung & bronchus	117,550	12%			Lung & bronchus	120,790	13%
Colon & rectum	81,860	8%			Colon & rectum	71,160	8%
Urinary bladder	62,420	6%			Uterine corpus	66,200	7%
Melanoma of the skin	58,120	6%			Melanoma of the skin	39,490	4%
Kidney & renal pelvis	52,360	5%			Non-Hodgkin lymphoma	35,670	4%
Non-Hodgkin lymphoma	44,880	4%			Thyroid	31,180	3%
Oral cavity & pharynx	39,290	4%			Pancreas	30,920	3%
Leukemia	35,670	4%			Kidney & renal pelvis	29,440	3%
Pancreas	33,130	3%			Leukemia	23,940	3%
All Sites	1,010,310	100%			All Sites	948,000	100%

Estimated Deaths

			Males	Females
Lung & bronchus	67,160	21%		Lung & bronchus 59,910 21%
Prostate	34,700	11%	17	Breast 43,170 15%
Colon & rectum	28,470	9%		Colon & rectum 24,080 8%
Pancreas	26,620	8%		Pancreas 23,930 8%
Liver & intrahepatic bile duct	19,000	6%		Ovary 13,270 5%
Leukemia	13,900	4%		Uterine corpus 13,030 5%
Esophagus	12,920	4%		Liver & intrahepatic bile duct 10,380 4%
Urinary bladder	12,160	4%		Leukemia 9,810 3%
Non-Hodgkin lymphoma	11,780	4%		Non-Hodgkin lymphoma 8,400 3%
Brain & other nervous system	11,020	3%		Brain & other nervous system 7,970 3%
All Sites	322,080	100%		All Sites 287,740 100%

Life time risk of lung cancer : 1 in 15

In the US (2023): Incidence:

238 K/year

<u>Deaths:</u> 127 K/year

Worldwide (2020)

<u>Incidence:</u> 2.2 million/year <u>Deaths:</u> 1.8 million/year

**World Cancer Research Fund International data

Estimated New Cases							
			Males	Female	s		
Prostate	288,300	29%			Breast	297,790	31%
Lung & bronchus	117,550	12%			Lung & bronchus	120,790	13%
Colon & rectum	81,860	8%			Colon & rectum	71,160	8%
Urinary bladder	62,420	6%			Uterine corpus	66,200	7%
Melanoma of the skin	58,120	6%			Melanoma of the skin	39,490	4%
Kidney & renal pelvis	52,360	5%			Non-Hodgkin lymphoma	35,670	4%
Non-Hodgkin lymphoma	44,880	4%			Thyroid	31,180	3%
Oral cavity & pharynx	39,290	4%			Pancreas	30,920	3%
Leukemia	35,670	4%			Kidney & renal pelvis	29,440	3%
Pancreas	33,130	3%			Leukemia	23,940	3%
All Sites	1,010,310	100%			All Sites	948,000	100%

In Puerto Rico (2015-2019): Incidence rate per 100,000: F: 337 M: 411

Estimated Deaths

			Males	Females
Lung & bronchus	67,160	21%		Lung & bronchus 59,910 21%
Prostate	34,700	11%	57	Breast 43,170 15%
Colon & rectum	28,470	9%		Colon & rectum 24,080 8%
Pancreas	26,620	8%		Pancreas 23,930 8%
Liver & intrahepatic bile duct	19,000	6%		Ovary 13,270 5%
Leukemia	13,900	4%		Uterine corpus 13,030 5%
Esophagus	12,920	4%		Liver & intrahepatic bile duct 10,380 4%
Urinary bladder	12,160	4%		Leukemia 9,810 3%
Non-Hodgkin lymphoma	11,780	4%		Non-Hodgkin lymphoma 8,400 3%
Brain & other nervous system	11,020	3%		Brain & other nervous system 7,970 3%
All Sites	322,080	100%		All Sites 287,740 100%

<u>Mortality rate per 100,000:</u> F: 86 M: 132

WHY KEEPING THE HOPE

SEER database study. Howlader N et al. N Engl J Med Aug 2020

Lung Cancer Screening Saves Lives

New Lung Cancer Screening Guidelines

50-80 Years Old

Have a 20 pack-year history, such as one pack per day for 20 years; or two packs per day for 10 years., etc.

Currently smoke or quit smoking in the last 15 years.

Lung Cancer Screening Saves Lives

- Lung Cancer screening results in a favorable shift to:
 - Increase in stage I
 - Decline in stage IV
 - NO increase in overall incidence of lung cancer

Vacchani et al. JTO Sep 2022

Lung Cancer screening is associated with lower risk of brain mets

Su et al, JTI June 2021

Outline

- Epidemiology of lung cancer
- Updates on management of early-stage NSCLC
- Update on management of stage IV NSCLC

Treatment options for early-stage NSCLC

<u>Stage IA</u>

-Surgery

If not surgical candidate: XRT (conventional or SBRT)
 No adjuvant therapy

<u>Stage IB-IIIA</u> -Surgery: Especially for IB-IIIA (non-N2 disease) <u>Post surgery:</u> Adjuvant chemo <u>for stage II and above</u> Adjuvant IO (Atezolizumab *IMPower 010*, or Pembrolizumab *Keynote091*) Adjuvant Osimertinib if EGFR (exon 19 or 21)+ *ADAURA*

-Neoadjuvant chemoimmuno (chemo + nivo) followed by surgery (checkmate 816)

Unresectable Stage IIIA or IIIB/C

Definitive concurrent chemoradiation followed by consolidation durvalumab (Pacific)

Neoadjuvant Therapy

CHECKMATE-816

Forde AACR 2021; Forde NEJM 2022

CHECKMATE-816: Pathological response

Forde AACR 2021; Forde NEJM 2022

CHECKMATE-816: Event-free survival

Forde AACR 2021; Forde NEJM 2022

CHECKMATE-816: EFS by stage

Forde AACR 2021; Forde NEJM 2022

MAYO CLINIC

Cancer Center

CHECKMATE-816: Subgroup analysis

	pCR ^a rate	e, %		Unweighted pCR
	NIVO + chemo (n = 179)	Chemo (n = 179)	Unweighted pCR difference, % (95% CI)	difference, %
Overall (N = 358)	24	2		22
< 65 years (n = 176)	27	0		27
≥ 65 years (n = 182)	21	4		17
Male (n = 255)	23	2		20
Female (n = 103)	28	2		26
North America (n = 91)	22	2		20
Europe (n = 66)	24	0	· · · · · · · · · · · · · · · · · · ·	24
Asia (n = 177)	28	3	I	25
Stage IB-II (n = 128)	26	5		21
Stage IIIA (n = 228)	23	1		22
Squamous (n = 182)	25	4		21
Non-squamous (n = 176)	23	0		23
Current/former smoker (n = 318)	26	2		23
Never smoker (n = 39)	10	0		10
PD-L1 < 1% (n = 155)	17	3		14
PD-L1 ≥ 1% (n = 178)	33	2		30
PD-L1 1-49% (n = 98)	24	0		24
PD-L1 ≥ 50% (n = 80)	45	5		40
TMB < 12.3 mut/Mb (n = 102)	22	2		21
TMB \geq 12.3 mut/Mb (n = 76)	31	3		28
Cisplatin (n = 258)	22	2		20
Carboplatin (n = 72)	31	0		31
ver BIPR in ITT.			30 -15 0 15 30 45 60 Chemo ← NIVO + chemo)

Forde AACR 2021; Forde NEJM 2022

Adjuvant Therapy

Impower-010: Adjuvant Atezolizumab

Phase III Randomized Trial

Stratification factors

- Male/female
- Stage (IB vs II vs IIIA)
- Histology
- PD-L1 tumor expression status^a: TC2/3 and any IC vs TC0/1 and IC2/3 vs TC0/1 and IC0/1

Primary endpoints

- Investigator-assessed DFS tested hierarchically:
 - PD-L1 TC ≥1% (per SP263) stage II-IIIA population
 - All-randomized stage II-IIIA population
 - ITT population (stage IB-IIIA)

Key secondary endpoints

- OS in ITT population
- DFS in PD-L1 TC ≥50% (per SP263) stage II-IIIA population
- 3-y and 5-y DFS in all 3 populations

Wakelee, ASCO Meeting 2021; Felip, Lancet 2021

Impower-010 Disease-free survival

Wakelee, ASCO Meeting 2021; Felip, Lancet 2021

©2017 MFMER | slide-22

Impower-010 Key subgroups

Subgroup	N		HR (95% CI) ^a
All patients	882	- -	0.79 (0.64, 0.96)
Age			
<65 y	544		0.79 (0.61, 1.03)
≥65 y	338		0.76 (0.54, 1.05)
Sex			
Male	589		0.76 (0.59, 0.99)
Female	293		0.80 (0.57, 1.13)
Race			
White	631		0.78 (0.61, 1.00)
Asian	227		0.82 (0.55, 1.22)
ECOG PS			
0	491		0.72 (0.55, 0.95)
1	388		0.87 (0.64, 1.18)
Tobacco use history			
Never	196	• • •	1.13 (0.77, 1.67)
Previous	547		0.62 (0.47, 0.81)
Current	139	·	1.01 (0.58, 1.75)
Histology			
Squamous	294		0.80 (0.54, 1.18)
Non-squamous	588		0.78 (0.61, 0.99)
	0.1	1.0	10.0
	4	HR	→
Clinical outoff: January	Atezoliz 21 2021 a Stratified for	umap better BSC bette	d for all other subgroups
unital cuton, salluary	LI, LULI. OUAUIEU IUI	an patiento, unotalille	a ioi ali ottici subgroups.

Subgroup	N		HR (95% CI) ^a
All patients	882		0.79 (0.64, 0.96)
Stage			
IIA	295	•	0.68 (0.46, 1.00)
IIB	174	•	0.88 (0.54, 1.42)
IIIA	413		0.81 (0.61, 1.06)
Regional lymph node stage (p	N)		
NO	229		0.88 (0.57, 1.35)
N1	348		0.67 (0.47, 0.95)
N2	305		0.83 (0.61, 1.13)
SP263 PD-L1 status			
TC≥50%	229	•••••	0.43 (0.27, 0.68)
TC≥1%	476		0.66 (0.49, 0.87)
TC<1%	383		0.97 (0.72, 1.31)
EGFR mutation status			
Yes	109		0.99 (0.60, 1.62)
No	463		0.79 (0.59, 1.05)
Unknown	310		0.70 (0.49, 1.01)
ALK rearrangement status			
Yes	31	·····	1.04 (0.38, 2.90)
No	507		0.85 (0.66, 1.10)
Unknown	344		0.66 (0.46, 0.93)
	0.1	1.0 HR	10.0
	Ate	zolizumab better BSC better	→ 0

Wakelee, ASCO Meeting 2021; Felip, Lancet 2021

Impower-010 OS Data from WCLC 2022

Results of OS IA: PD-L1 TC ≥1%^a (stage II-IIIA) (data cutoff: 18 Apr '22, median follow-up: 46 months)

mOS, median overall survival; NR, not reached. 8By SP263 assay. 5Stratified.

IASLC

2022 World Conference on Lung Cancer

Impower-010 OS Data from WCLC 2022

OS by biomarker status (stage II-IIIA) (data cutoff: 18 Apr '22)

Conference on Lung Cancer

IASLC

2022 World

Impower-010 OS Data from WCLC 2022

Subgroup analysis of OS in PD-L1 TC ≥1%^a (stage II-IIIA) (data cutoff: 18 Apr '22, median follow-up: 46 months)

IASLC

2022 World Conference on Lung Cancer

Pearls/Keynote-091: Adjuvant Pembrolizumab

Disease-free survival

Paz-Ares, ESMO Virtual Plenary 2022

Disease-free survival

DFS: Pembrolizumab vs Placebo by PD-L1 TPS

Paz-Ares, ESMO Virtual Plenary 2022

Overall survival

Paz-Ares, ESMO Virtual Plenary 2022

Benefit mainly in patients who received adjuvant chemo

Ev	Events/participants		Hazard ratio (95% C
Pe	embrolizumab	Placebo	
Age, years			
<65 9	94/285	119/273	0-73 (0-56-0-96)
≥65 11	18/305	141/314	0.84 (0.66-1-07)
Sex			
Female 7	71/189	87/184	0.73 (0.54-1.00)
Male 14	41/401	173/403	0.81 (0.65-1.01)
Geographical region			
Asia 4	14/106	52/105	0.74 (0.49-1.10)
Eastern Europe 4	12/116	48/113	0-84 (0-56-1-27)
Western Europe 10	9/303	136/301	0.77 (0.60-1.00)
Rest of the world 1	17/65	24/68	0.74 (0.40-1.39)
Race		1400	•
White 15	6/450	102/455	0.82 (0.66-1.01)
All otherst 4	10/118	58/112	0.71 (0.49-1.04)
ECOG performance status score	+9/110	50/115	
0 12	9/280	150/242	0.78 (0.62, 0.90)
1	74/210	110/244	070(052-196)
1 /	4/210	110/244	0.79 (0.59-1.06)
Gurrant	15/75	28/00	-
Conenc 1	15//5	30/90	
Former 15	55/420	105/431	0-84 (0-88-1-04)
Never 4	42/8/	3//66	
Disease stage		De lOe	
IB 2	21/84	25/85	0.76 (0.43-1.37)
II 10	02/329	144/338	0-70 (0-55-0-91)
IIIA 8	39/177	89/162	0-92 (0-69–1-24)
Received adjuvant chemotherapy			
No 3	35/84	29/83	1.25 (0.76-2.05)
Yes 17	77/506	231/504	
Histology			
Non-squamous 14	46/398	184/363	0-67 (0-54-0-83)
Squamous 6	56/192	76/224	1.04 (0.75-1.45)
PD-L1TPS			
<1% 8	39/233	106/232	0-78 (0-58–1-03)*
1-49% 6	59/189	91/190	0.67 (0.48–0.92)*
≥50% 5	54/168	63/165	0-82 (0-57-1-18)*
EGFR mutation			
No 8	34/218	102/216	0-78 (0-59–1-05)
Yes 1	18/39	22/34	0.44 (0.23-0.84)
Unknown 11	10/333	136/337	0.82 (0.63-1.05)
Overall population 21	12/590	260/587	0.76 (0.63-0.91)*
		5	0.2 0.5 1.0 2.0 5.0
			Favours pembrolizumab Favours placebo

O'brien et al, The Lancet Oncology Sep 2022

What Should We do?

Adjuvant Immunotherapy Vs Neoadjuvant Immunotherapy

What Should We do?

Adjuvant Immunotherapy Vs Neoadjuvant Immunotherapy

Happy to come for another 2 hours talk to cover this

Osimertinib as adjuvant therapy in patients with stage IB–IIIA EGFR mutation positive **NSCLC** after complete tumor resection: **ADAURA**

Roy S. Herbst¹, Masahiro Tsuboi², Thomas John³, Christian Grohe⁴, Margarita Majem⁵, Jonathan W. Goldman⁶, Sang-We Kim⁷, Dominika Marmol⁸, Yuri Rukazenkov⁸, Yi-Long Wu⁹

¹ Medical Oncology, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA; ² Department of Thoracic Surgery and Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ³ Department of Medical Oncology, Austin Health, Melbourne, Australia; ⁴ Klinik für Pneumologie - Evangelische Lungenklinik Berlin Buch, Berlin, Germany; ⁵ Medical Oncology Services, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; ⁶ David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; ⁷ Department of Oncology, Asan Medical Center, Seoul, South Korea; ⁸ Oncology Research & Development, AstraZeneca, Cambridge, United Kingdom; ⁹ Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China

Slides are the property of the author, permission required for reuse. ANNUAL MEETING

PRESENTED BY: ROV S. Herbst

Presented By Roy Herbst at TBD

ADAURA Phase III double-blind study design

Endpoints

- Primary: DFS, by investigator assessment, in stage II/IIIA patients; designed for superiority under the assumed DFS HR of 0.70
- Secondary: DFS in the overall population[¶], DFS at 2, 3, 4, and 5 years, OS, safety, health-related quality of life
- Following IDMC recommendation, the study was unblinded early due to efficacy; here we report an unplanned interim analysis
- At the time of unblinding the study had completed enrollment and all patients were followed up for at least 1 year

Presented By Roy Herbst at TBD

HOT OFF THE PRESS Updated DFS

Herbst et al, JCO Jan 2023

MAYO CLINIC

Cancer Center

DFS subgroups analysis

Subgroup	No. of Patients	HR for Disease Recurrence	or Death (95% CI)
Overall	682		
Stratified log-rank test		<u>⊢ • - 1</u>	0.27 (0.21 to 0.34)
Unadjusted Cox proportional-hazards model			0.32 (0.25 to 0.40)
Sex			
Male	204		0.31 (0.20 to 0.48)
Female	478		0.31 (0.23 to 0.42)
Age, years			
< 65	380	⊢	0.31 (0.22 to 0.42)
≥ 65	302		0.33 (0.23 to 0.48)
Smoking history			
Yes	194	⊢	0.26 (0.16 to 0.40)
No	488	i i i i i i i i i i i i i i i i i i i	0.34 (0.26 to 0.45)
Race			
Asian	434	i ⊧ ; • 1	0.34 (0.25 to 0.45)
Non-Asian	248		0.28 (0.18 to 0.43)
Stage			
IB	212		0.41 (0.23 to 0.69)
11	236	i 	0.34 (0.23 to 0.52)
IIIA	234		0.20 (0.14 to 0.29)
EGFR mutation			
Ex19del	378		0.24 (0.17 to 0.33)
L858R	304		0.45 (0.31 to 0.64)
Adjuvant chemotherapy			
Yes	410		0.29 (0.21 to 0.39)
No	272		0.36 (0.24 to 0.55)
	0.1	0.2 0.4 0.6 0.8 1.0 Favors Osimertinib Fa	2.0 vors Placebo

Herbst et al, JCO Jan 2023

CNS DFS

Herbst et al, JCO Jan 2023

Early snapshot: overall survival in patients with stage II/IIIA disease

PRESENTED AT: 202

2020 ASCO #ASCO2 ANNUAL MEETING Slides are the property of the author permission required for reuse.

PRESENTED BY: ROY S. Herbst

ADAURA data cut-off: January 17, 2020. Median follow-up: osimerfinib 26.1, placebo 24.7 months. Tick marks indicate censored data.

Presented By Roy Herbst

Unresectable stage III NSCLC

Unresectable stage III NSCLC- Pacific trial

- Updated analyses of OS and PFS (~4 years after the last patient was randomised; planned exploratory update)
 - Treatment effects for the ITT population were estimated using a stratified log-rank approach (with trial stratification factors)
 - Treatment effects for patient subgroups were estimated from unstratified Cox proportional-hazards models (with treatment as the only covariate)

Antonia, NEJM 2018; Spigel JCO 2022

Pacific trial

MAYO CLINIC

Cancer Center

Antonia, NEJM 2018; Spigel JCO 2022

©2017 MFMER | slide-42

Outline

- Epidemiology of lung cancer
- Updates on management of early-stage NSCLC
- Updates on management of stage IV NSCLC

Treatment options for stage IV NSCLC

Chemotherapy

Targeted therapy

Immunotherapy

Molecular Profiling of Lung Adenocarcinoma

Tan et al; *JCO* 2022

Timeline of FDA-approved targeted therapies for oncogene-driven NSCLC

Tan et al; JCO 2022

FDA approved Targeted therapeutic agents in Lung Adenocarcinoma (as of Feb 2023)

Gene	FDA approved Therapeutic Agents
ALK	Alectinib, Brigatinib, Ceritinib, Crizotinib, Lorlatinib
BRAF V600E	Dabrafenib plus Trametinib
EGFR	Osimertinib, Erlotinib, Afatinib, Gefitinib, Dacomatinib, Erlotinib + Ramucirumab
EGFR Exon 20	Amivantamab, Mobocertinib (in 2 nd line)
KRAS (G12C)	Sotorasib, Adagrasib <u>(in 2nd line)</u>
MET exon 14	Capmatinib, Tepotinib
NTRK	Larotrectinib, Entrectinib
RET	Selpercatinib, Pralsetinib
ROS-1	Crizotinib, Entrectinib
Her-2	Trastuzumab Deruxtecan (in 2 nd line)

Molecular Testing

Every patient with advanced NSCLC (at least nonsquamous) <u>SHOULD</u> have full NGS testing

Data shows we are doing better with NGS testing, but we are not there yet

We can, we need to, and we should DO EVEN BETTER with NGS testing

Highly recommend to wait for results of NGS before starting Tx (due to toxicity when giving targeted therapy after IO)

Molecular Testing

 Multiplexed next genetic sequencing (NGS) panels are preferred over single- gene tests (tell you more and cost less)

- Test <u>all non-squamous</u> histologies and any NSCLC histology when clinical features indicate a higher probability of an oncogenic driver (eg, young age; light or absent tobacco Hx).
- In some clinical settings in which tissue is limited and/or insufficient for molecular testing, physicians could/should use a <u>cfDNA assay (liquid biopsy)</u>

Molecular Testing

- Multiplexed next genetic sequencing (NGS) panels are preferred over single- gene tests (tell you more and cost less)
- Test <u>all non-squamous</u> histologies and any NSCLC histology when clinical features indicate a higher probability of an oncogenic driver (eg, young age; light or absent tobacco Hx).
- In some clinical settings in which tissue is limited and/or insufficient for molecular testing, physicians could/should use a <u>cfDNA assay (liquid biopsy)</u>

I recommend using both and I usually send both

#ASC022

Association of comprehensive molecular genotyping and overall survival in patients with advanced nonsquamous non-small cell lung cancer

Charu Aggarwal, Melina E. Marmarelis, Wei-Ting Hwang, Dylan G. Scholes, Tara L. McWilliams, Aditi P. Singh, Lova Sun, John Kosteva, Michael R. Costello, Roger B. Cohen, Corey J. Langer, Peter E. Gabriel, Lawrence N. Shulman, Jeffrey C. Thompson, Erica L. Carpenter

> Abramson Cancer Center, University of Pennsylvania Philadelphia, PA, United States

^{presented ву:} Charu Aggarwal, MD, MPH | @CharuAggarwalMD

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Comprehensive molecular genotyping and overall survival

Targeted Therapy 1.00 Log-rank 1.00 Log-rank p = 0.02p=0.41 OS (probability) 0.75 0.50 0.50 0.25 Comprehensiv Testing Incomplete/N 0.25 + Testing Comprehensive Testing 36 30 Incomplete/No Time (months) Testing 0.00 No targeted therapy 18 24 30 12 36 0 6 1.00-Log-rank Time (months) p=0.24 ability) Number at risk 0.50 Comprehensive 291 213 152 85 43 16 0 Testing SOS Incomplete/No 0 Comprehensi 44 22 18 14 6 Testing Testing esting 18 24 6 12 30 36 18 Time (months) Time (months)

Patients with comprehensive molecular genotyping had superior OS (22.1 months, 95% CI 14.62 -Availability of molecular genotyping results prior to first line therapy was associated with an NA), compared to those with incomplete or no testing (11.6 months, 95% CI 3.61 - NA), p=0.02, improvement in OS (24.57 months, 95% CI, 18.56– NR), compared to patients without results likely mediated by delivery of targeted therapy available prior to first line therapy (6.18 months, 95% CI, 2.83 - 10.3), p<0.0001

(probability)

SO

5

Targeted therapy 1.00 Log-rank 1.00 Log-rank p < 0.0001 p = 0.420.75 0.75 obability) 0.50 P 0.50 SC 0.25 + Prior to 1L + Not prior to 1L 0.25 + Prior to 1L 18 24 Time (months) + Not prior to 1L 0.00 No targeted therapy 12 18 24 30 36 1.00 6 Log-rank Time (months) p < 0.0001 174 Number at risk 0.50 Prior to * 261 20 42 14 0 ē SOS 0.25 Not prior to 1 27 65 14 2 0 6 + Prior to 1L + Not prior to 1L 18 24 30 36 Time (months) Time (months)

Kaplan-Meier curve for OS of patients with comprehensive testing back prior to first line treatment compared to patients with results not back prior to first line treatment.

PRESENTED BY: Charu Aggarwal, MD, MPH | @CharuAggarwalMD

Kaplan-Meier curve for OS of patients with comprehensive testing compared to patients

Fig 1.

Newly approved therapy for Her 2 mutation

The NEW ENGLAND JOURNAL of MEDICINE

Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer

Trastuzumab deruxtecan showed durable anticancer activity.

B.T. Li et al. 10.1056/NEJMoa2112431

Copyright © 2022 Massachusetts Medical Society

Immunotherapy

 IO has become standard of care in 1st line systemic therapy for stage IV, either alone or in combination with chemo

• Options:

- Atezolizumab
- Cemiplimab-rwlc
- Ipilimumab + Nivolumab
- Pembrolizumab
- Tremelimumab + Durvalumab

Treatment algorithm for stage IV NSCLC

META ANALYSIS: CHEMO-IO VS IO: PD-L1 ≥1-49%

Akinboro, et al. ASCO, 2021

©2017 MFMER | slide-56

META ANALYSIS: CHEMO-IO VS IO: PD-L1 ≥1-49%

	Subgroup	N ¹	Median OS in months	OS HR ² (95% CI)	Median PFS in months	PFS HR ² (95% CI)
Age	<65	580	23.7 vs 16.1	0.63 (0.43, 0.92)	7.1 vs 4.0	0.55 (0.40, 0.76)
	65-74	443	22.5 vs 14.8	0.61 (0.38, 0.97)	9.5 vs 4.5	0.60 (0.40, 0.88)
	≥75	132	13.9 vs 10.3	0.95 (0.42, 2.14)	6.4 vs 4.9	0.85 (0.42, 1.71)
ECOG	0	415	25.2 vs 20.0	0.65 (0.38, 1.10)	9.6 vs 5.8	0.57 (0.38, 0.86)
	1+	751	16.8 vs 11.0	0.68 (0.50, 0.94)	7.0 vs 4.0	0.65 (0.49, 0.86)
Smoking	Never	160	28.2 vs 18.0	0.57 (0.22, 1.46)	8.1 vs 4.1	0.44 (0.21, 0.92)
	Ever	1005	20.8 vs 13.5	0.68 (0.51, 0.91)	7.6 vs 4.2	0.62 (0.49, 0.80)

Akinboro, et al. ASCO, 2021

META ANALYSIS: CHEMO-IO VS IO: PD-L1 ≥50%

MAYO CLINIC Cancer Center

©2017 MFMER | slide-58

META ANALYSIS: CHEMO-IO VS IO: PD-L1 ≥50%

	Hazard Ratio						
Subaroup	N		Median OS (95% CI)	Median OS (95% CI)			
Subgroup	IN		Chemo-IO	IO-Only			
Overall	1753	┠═┨	25.0 (19.0, NE)	20.9 (18.5, 23.1)			
<65 years 65-74 years >=75 years	898 642 185	┝╼┤ ┝╼┤ ┣┤╼╴┤	25.0 (19.2, NE) 22.2 (16.5, NE) NE (12.0, NE)	23.3 (20.0, NE) 18.6 (16.0, 21.9) 18.9 (15.1, NE)			
ECOG 0 1+	602 1148	┝╌═╌┤ ┝═┥	NE (23.0, NE) 17.7 (14.8, NE)	31.8 (22.4, NE) 18.0 (15.7, 21.0)			
Smoking Status Current/former smokers Never smokers	1549 197		23.0 (18.2, NE) NE (22.2, NE)	22.1 (19.7, 25.1) 14.4 (12.2, 21.0)			
0.25 0.50 1.0 2.0 <chemo-io better="" betterio-only=""></chemo-io>							

Akinboro, et al. ASCO, 2022

CHEMO-IO VS IO-ALONE: TOXICITY

	All Grade Toxicities (P+C vs P)			Grade 3-5 Toxicities (P+C vs P)		
	RD (%)	95% CI	р	RD (%)	95% CI	р
Any	17.3	8.7, 25.8	< 0.01	23.3	4.7, 41.9	0.014
Led to Discontinuation	12	1.9, 22	0.02	7.4	0.5, 14.3	0.035
Neutropenia	25.9	17.2, 34.5	< 0.01	14.7	5.3, 24.1	0.002
Vomiting	20.5	12.2, 28.7	< 0.01	-0.8	-4.7, 3.1	0.69
Thrombocytopenia	16.5	9.6, 23.4	< 0.01	6	1.3, 107	0.012
Any irAE	-9.1	-25.8, 7.6	0.29	-3.1	-9.1, 2.8	0.30
Hypothyroidism	-2.7	-8.1, 2.8	0.34		NA	
Severe skin reaction	-3.2	-7.1, 0.7	0.11	-3.4	-6.7, -0.1	0.045

Doherty, et al. ASCO, 2019; Zhang lab, unpublished

ECOG-ACRIN EA 5163 CLINICAL TRIAL CHEMO-IO VS IO-ALONE:

Treatment options for stage IV NSCLC

National Comprehensive NCCN Cancer Network[®]

NCCN Guidelines Version 1,2023 Non-Small Cell Lung Cancer

NCCN Guidelines Index Table of Contents Discussion

MOLECULAR AND BIOMARKER-DIRECTED THERAPY FOR ADVANCED OR METASTATIC DISEASE^{a,b}

PD-L1 ≥50% First-line Therapy

ADENOCARCINOMA, LARGE CELL, NSCLC NOS

Preferred

- Pembrolizumab (category 1)^{46,47}
- (Carboplatin or cisplatin) + pemetrexed + pembrolizumab (category 1)^{48,49}
- Atezolizumab (category 1)50
- Cemiplimab-rwlc (category 1)⁵¹

Other Recommended

- Carboplatin + paclitaxel + bevacizumab^{c,d} + atezolizumab (category 1)⁵²
- Carboplatin + albumin-bound paclitaxel + atezolizumab⁵
- Nivolumab + ipilimumab + pemetrexed + (carboplatin or cisplatin) (category 1)⁵⁴
- Cemiplimab-rwlc + paclitaxel + (carboplatin or cisplatin) (category 1)⁵⁵
 Cemiplimab-rwlc + pemetrexed + (carboplatin or cisplatin) (category 1)⁵⁵
- Tremelimumab-actl + durvalumab + carboplatin + albumin-bound pacifitaxel (category 2B)⁵⁶
- Tremelimumab-actl + durvalumab + (carboplatin or cisplatin) + pemetrexed (category 2B)⁵⁶
- Useful in Certain Circumstances
- Nivolumab + ipilimumab (category 1)⁵⁷

SQUAMOUS CELL CARCINOMA Preferred

- Pembrolizumab (category 1)^{46,47}
- Carboplatin + (paclitaxel or albumin-bound paclitaxel) + pembrolizumab (category 1)⁵⁸
 Atezolizumab (category 1)⁵⁰
- Cemiplimab-rwlc (category 1)⁵¹

Other Recommended

- Nivolumab + ipilimumab + paclitaxel + carboplatin (category 1)⁵³
- Cemiplimab-rwlc + paclitaxel + (carboplatin or cisplatin) (category 1)⁵⁵
- Tremelimumab-actl + durvalumab + carboplatin + albumin-bound paclitaxel (category 2B)⁵⁶
- Tremelimumab-actl + durvalumab + (carboplatin or cisplatin) + gemcitabine (category 2B)⁵⁶
- **Useful in Certain Circumstances**
- Nivolumab + ipilimumab (category 1)⁵⁷

PD-L1 ≥1-49% First-line Therapy **Continuation Maintenance**

Treatment options for stage IV NSCLC

NCCN NCCN Network®

NCCN Guidelines Version 1.2023 Non-Small Cell Lung Cancer

NCCN Guidelines Index Table of Contents Discussion

MOLECULAR AND BIOMARKER-DIRECTED THERAPY FOR ADVANCED OR METASTATIC DISEASE^{a,b}

PD-L1 ≥1%-49% First-line Therapy

ADENOCARCINOMA, LARGE CELL, NSCLC NOS

Preferred

- (Carboplatin or cisplatin) + pemetrexed + pembrolizumab (category 1)^{48,49}
 Other Recommended
- Carboplatin + paclitaxel + bevacizumab^{c,d} + atezolizumab (category 1)⁵²
- Carboplatin + albumin-bound paclitaxel + atezolizumab⁵³
- Nivolumab + ipilimumab + pemetrexed + (carboplatin or cisplatin) (category 1)⁵⁴
- Nivolumab + ipilimumab (category 1)⁵⁷
- Cemiplimab-rwlc + paclitaxel + (carboplatin or cisplatin) (category 1)⁵⁵
- Cemiplimab-rwlc + pemetrexed + (carboplatin or cisplatin) (category 1)⁵⁵
- Tremelimumab-actl + durvalumab + carboplatin + albumin-bound paclitaxel (category 1)⁵⁶
- Tremelimumab-actl + durvalumab + (carboplatin or cisplatin) + pemetrexed (category 1)⁵⁶

Useful in Certain Circumstances

Pembrolizumab (category 2B)^{e,46,47}

SQUAMOUS CELL CARCINOMA

Preferred

Carboplatin + (paclitaxel or albumin-bound paclitaxel) + pembrolizumab (category 1)⁵⁸
 Other Recommended

- Nivolumab + ipilimuab + paclitaxel + carboplatin (category 1)⁵³
- Nivolumab + ipilimumab (category 1)⁵⁷
- Cemiplimab-rwlc + paclitaxel + (carboplatin or cisplatin) (category 1)⁵⁵
- Tremelimumab-actl + durvalumab + carboplatin + albumin-bound paclitaxel⁵⁶
- Tremelimumab-actl + durvalumab + (carboplatin or cisplatin) + gemcitabine⁵⁶
- Useful in Certain Circumstances

MAYO CLINIC

Pembrolizumab (category 2B)^{e,46,47}

PD-L1 ≥50% First-line Therapy

Continuation Maintenance

KEYNOTE-024

Primary: PFS (RECIST v1.1 per blinded, independent central review)

Secondary: OS, ORR, safety

Exploratory: DOR, Quality of life

Updated survival data from Keynote 024

B

De Castro Jr et al, JCO Oct 2022

FDA Approvals for lung cancer 2022/2023

- <u>Adjuvant</u> Pembrolizumab JAN 23
 *Stage IB-IIIA NSCLC (post chemo/post resection)
- Adagrasib (accelerated approval) DEC 22
 *Advanced +KRAS NSCLC (2nd line)
- Tremelimumab + Durvalumab + chemo NOV 22
 *Advanced NSCLC (1st line)
- Cemiplimab-rwlc + chemo NOV 22
 *Advanced NSCLC (1st line)
- Fam-Trastuzumab Deruxtecan-nxki AUG 22
 * HER-2 + mutation NSCLC (2nd line)
- <u>Neoadjuvant Nivolumab + Chemo</u> MAR 22
 *Resectable NSCLC
- Regular Approval for Selpercatinib (had initial accelerated approval) SEP 22
 * Advanced RET+ NSCLC

Thank You

Acknowledgment: Patients and their families

"The human spirit is much stronger than anything that could happen to it"

George Scott

